Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach
This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.16066-16077 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16077 |
---|---|
container_issue | |
container_start_page | 16066 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Qinxue Li, Shanbin Xu, Bugong Liu, Yonggui |
description | This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy. |
doi_str_mv | 10.1109/ACCESS.2019.2891772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455604694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620564</ieee_id><doaj_id>oai_doaj_org_article_fe069d9e117a47d6be5a3869ac95b612</doaj_id><sourcerecordid>2455604694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBIoMEv4BKJc0c-mmThVpWvSRMgDU4cIrd1WUdZR9Ih9d8T6ITwxfaTn63nR8g5Z1POmb3M8vxmuZwKxu1UzCw3RhyQE8G1TaSS-vBffUzOQlizGLMIKXNCXh-3ffMBLX3oKqRZ30P5TrsNzWEXoG36gWYbaIfQBNpEdCjQJ0-r2JeRsxxCjx_himb0GnpIrn3zhRuabbe-g3J1So5qaAOe7fOEvNzePOf3yeLxbp5ni6SUQopECaMEpgYZS5nSkkstK1uqoq5TVYNALVAxw4WUTHGBrBZVXTBmOSgJBuWEzMe9VQdrt_VRjx9cB437BTr_5sD3Tdmiq5FpW1nk3EBqKl2gAjnTFkqrCh1PTMjFuCtK-Nxh6N262_n4guBEqpRmqbZpnJLjVOm7EDzWf1c5cz-muNEU92OK25sSWecjq0HEP8ZMi6g6ld97X4Wh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455604694</pqid></control><display><type>article</type><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</creator><creatorcontrib>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</creatorcontrib><description>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891772</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric measurements ; Causality ; causality analysis ; Cyber-physical systems ; Cyberattack ; data-driven ; Indexes ; Node attack ; Nodes ; Observability (systems) ; Smart grid ; Smart grids ; State estimation ; Strategy ; Topology</subject><ispartof>IEEE access, 2019, Vol.7, p.16066-16077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</citedby><cites>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</cites><orcidid>0000-0001-8791-4056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620564$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</description><subject>Atmospheric measurements</subject><subject>Causality</subject><subject>causality analysis</subject><subject>Cyber-physical systems</subject><subject>Cyberattack</subject><subject>data-driven</subject><subject>Indexes</subject><subject>Node attack</subject><subject>Nodes</subject><subject>Observability (systems)</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>State estimation</subject><subject>Strategy</subject><subject>Topology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBIoMEv4BKJc0c-mmThVpWvSRMgDU4cIrd1WUdZR9Ih9d8T6ITwxfaTn63nR8g5Z1POmb3M8vxmuZwKxu1UzCw3RhyQE8G1TaSS-vBffUzOQlizGLMIKXNCXh-3ffMBLX3oKqRZ30P5TrsNzWEXoG36gWYbaIfQBNpEdCjQJ0-r2JeRsxxCjx_himb0GnpIrn3zhRuabbe-g3J1So5qaAOe7fOEvNzePOf3yeLxbp5ni6SUQopECaMEpgYZS5nSkkstK1uqoq5TVYNALVAxw4WUTHGBrBZVXTBmOSgJBuWEzMe9VQdrt_VRjx9cB437BTr_5sD3Tdmiq5FpW1nk3EBqKl2gAjnTFkqrCh1PTMjFuCtK-Nxh6N262_n4guBEqpRmqbZpnJLjVOm7EDzWf1c5cz-muNEU92OK25sSWecjq0HEP8ZMi6g6ld97X4Wh</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Qinxue</creator><creator>Li, Shanbin</creator><creator>Xu, Bugong</creator><creator>Liu, Yonggui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid></search><sort><creationdate>2019</creationdate><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><author>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric measurements</topic><topic>Causality</topic><topic>causality analysis</topic><topic>Cyber-physical systems</topic><topic>Cyberattack</topic><topic>data-driven</topic><topic>Indexes</topic><topic>Node attack</topic><topic>Nodes</topic><topic>Observability (systems)</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>State estimation</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinxue</au><au>Li, Shanbin</au><au>Xu, Bugong</au><au>Liu, Yonggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>16066</spage><epage>16077</epage><pages>16066-16077</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891772</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.16066-16077 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455604694 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Atmospheric measurements Causality causality analysis Cyber-physical systems Cyberattack data-driven Indexes Node attack Nodes Observability (systems) Smart grid Smart grids State estimation Strategy Topology |
title | Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Node%20Attack%20on%20Causality%20Analysis%20in%20Cyber-Physical%20Systems:%20A%20Data-Driven%20Approach&rft.jtitle=IEEE%20access&rft.au=Li,%20Qinxue&rft.date=2019&rft.volume=7&rft.spage=16066&rft.epage=16077&rft.pages=16066-16077&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891772&rft_dat=%3Cproquest_ieee_%3E2455604694%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455604694&rft_id=info:pmid/&rft_ieee_id=8620564&rft_doaj_id=oai_doaj_org_article_fe069d9e117a47d6be5a3869ac95b612&rfr_iscdi=true |