Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach

This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.16066-16077
Hauptverfasser: Li, Qinxue, Li, Shanbin, Xu, Bugong, Liu, Yonggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16077
container_issue
container_start_page 16066
container_title IEEE access
container_volume 7
creator Li, Qinxue
Li, Shanbin
Xu, Bugong
Liu, Yonggui
description This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.
doi_str_mv 10.1109/ACCESS.2019.2891772
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455604694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620564</ieee_id><doaj_id>oai_doaj_org_article_fe069d9e117a47d6be5a3869ac95b612</doaj_id><sourcerecordid>2455604694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBIoMEv4BKJc0c-mmThVpWvSRMgDU4cIrd1WUdZR9Ih9d8T6ITwxfaTn63nR8g5Z1POmb3M8vxmuZwKxu1UzCw3RhyQE8G1TaSS-vBffUzOQlizGLMIKXNCXh-3ffMBLX3oKqRZ30P5TrsNzWEXoG36gWYbaIfQBNpEdCjQJ0-r2JeRsxxCjx_himb0GnpIrn3zhRuabbe-g3J1So5qaAOe7fOEvNzePOf3yeLxbp5ni6SUQopECaMEpgYZS5nSkkstK1uqoq5TVYNALVAxw4WUTHGBrBZVXTBmOSgJBuWEzMe9VQdrt_VRjx9cB437BTr_5sD3Tdmiq5FpW1nk3EBqKl2gAjnTFkqrCh1PTMjFuCtK-Nxh6N262_n4guBEqpRmqbZpnJLjVOm7EDzWf1c5cz-muNEU92OK25sSWecjq0HEP8ZMi6g6ld97X4Wh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455604694</pqid></control><display><type>article</type><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</creator><creatorcontrib>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</creatorcontrib><description>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891772</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric measurements ; Causality ; causality analysis ; Cyber-physical systems ; Cyberattack ; data-driven ; Indexes ; Node attack ; Nodes ; Observability (systems) ; Smart grid ; Smart grids ; State estimation ; Strategy ; Topology</subject><ispartof>IEEE access, 2019, Vol.7, p.16066-16077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</citedby><cites>FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</cites><orcidid>0000-0001-8791-4056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620564$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</description><subject>Atmospheric measurements</subject><subject>Causality</subject><subject>causality analysis</subject><subject>Cyber-physical systems</subject><subject>Cyberattack</subject><subject>data-driven</subject><subject>Indexes</subject><subject>Node attack</subject><subject>Nodes</subject><subject>Observability (systems)</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>State estimation</subject><subject>Strategy</subject><subject>Topology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBIoMEv4BKJc0c-mmThVpWvSRMgDU4cIrd1WUdZR9Ih9d8T6ITwxfaTn63nR8g5Z1POmb3M8vxmuZwKxu1UzCw3RhyQE8G1TaSS-vBffUzOQlizGLMIKXNCXh-3ffMBLX3oKqRZ30P5TrsNzWEXoG36gWYbaIfQBNpEdCjQJ0-r2JeRsxxCjx_himb0GnpIrn3zhRuabbe-g3J1So5qaAOe7fOEvNzePOf3yeLxbp5ni6SUQopECaMEpgYZS5nSkkstK1uqoq5TVYNALVAxw4WUTHGBrBZVXTBmOSgJBuWEzMe9VQdrt_VRjx9cB437BTr_5sD3Tdmiq5FpW1nk3EBqKl2gAjnTFkqrCh1PTMjFuCtK-Nxh6N262_n4guBEqpRmqbZpnJLjVOm7EDzWf1c5cz-muNEU92OK25sSWecjq0HEP8ZMi6g6ld97X4Wh</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Qinxue</creator><creator>Li, Shanbin</creator><creator>Xu, Bugong</creator><creator>Liu, Yonggui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid></search><sort><creationdate>2019</creationdate><title>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</title><author>Li, Qinxue ; Li, Shanbin ; Xu, Bugong ; Liu, Yonggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3232-52752e47e00405631363d9c5bff45fa2e62e50712330512e0f2dfb0091a53a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric measurements</topic><topic>Causality</topic><topic>causality analysis</topic><topic>Cyber-physical systems</topic><topic>Cyberattack</topic><topic>data-driven</topic><topic>Indexes</topic><topic>Node attack</topic><topic>Nodes</topic><topic>Observability (systems)</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>State estimation</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinxue</au><au>Li, Shanbin</au><au>Xu, Bugong</au><au>Liu, Yonggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>16066</spage><epage>16077</epage><pages>16066-16077</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891772</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.16066-16077
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455604694
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Atmospheric measurements
Causality
causality analysis
Cyber-physical systems
Cyberattack
data-driven
Indexes
Node attack
Nodes
Observability (systems)
Smart grid
Smart grids
State estimation
Strategy
Topology
title Optimal Node Attack on Causality Analysis in Cyber-Physical Systems: A Data-Driven Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Node%20Attack%20on%20Causality%20Analysis%20in%20Cyber-Physical%20Systems:%20A%20Data-Driven%20Approach&rft.jtitle=IEEE%20access&rft.au=Li,%20Qinxue&rft.date=2019&rft.volume=7&rft.spage=16066&rft.epage=16077&rft.pages=16066-16077&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891772&rft_dat=%3Cproquest_ieee_%3E2455604694%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455604694&rft_id=info:pmid/&rft_ieee_id=8620564&rft_doaj_id=oai_doaj_org_article_fe069d9e117a47d6be5a3869ac95b612&rfr_iscdi=true