Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents
It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.139616-139627 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139627 |
---|---|
container_issue | |
container_start_page | 139616 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Guodong Wang, Zhe Ma, Yinglong |
description | It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance. |
doi_str_mv | 10.1109/ACCESS.2019.2943668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455601817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8848401</ieee_id><doaj_id>oai_doaj_org_article_21478e2797074a9e949aab6742e82bf9</doaj_id><sourcerecordid>2455601817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz97qy7J0DO42DdnSw6b0KCR5tKvFtraSlyaX_vYo6xA6lxke72PgVdU1wStCsPpy03Xr7XZFMVErqjgTQr6rLigRqmYNE-__uz9WVzkfcBlZoKa9qP51cbRhCtMOfY2jCRO6n-LfAfodoPXjnIybQ5zQ7zDv0W0yxz3axMLd7mOa6wdII_oBY0xPyMeENmDS2aobTM7BB2fO6uhRtw8TZCiUnRlKlDuNMM35U_XBmyHD1eu-rH59Wz903-vNz9u77mZTO47lXDsleo-5UgYYt8L3jbVWAHbYEiOVxNQ1xvPWlRG0F5wp63rsG2YsCG_ZZXW3-PbRHPQxhdGkJx1N0Gcgpp02aQ5uAE0JbyXQVrW45UaB4soYK1pOQVLrVfH6vHgdU_xzgjzrQzylqbyvKW8agYkkbWGxheVSzDmBf0slWL_0ppfe9Etv-rW3orpeVAEA3hRScskxYc9TbJWN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601817</pqid></control><display><type>article</type><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</creator><creatorcontrib>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</creatorcontrib><description>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943668</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Electronic documents ; Feature extraction ; Graph LSTM ; Information retrieval ; judicial domain model ; judicial field ; Law ; Learning ; Legal documents ; literature search ; Ontologies ; Ontology ; Semantics ; Short term ; Support vector machines ; Text categorization</subject><ispartof>IEEE access, 2019, Vol.7, p.139616-139627</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</citedby><cites>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</cites><orcidid>0000-0002-4902-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8848401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><title>IEEE access</title><addtitle>Access</addtitle><description>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</description><subject>Classification</subject><subject>Electronic documents</subject><subject>Feature extraction</subject><subject>Graph LSTM</subject><subject>Information retrieval</subject><subject>judicial domain model</subject><subject>judicial field</subject><subject>Law</subject><subject>Learning</subject><subject>Legal documents</subject><subject>literature search</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Semantics</subject><subject>Short term</subject><subject>Support vector machines</subject><subject>Text categorization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz97qy7J0DO42DdnSw6b0KCR5tKvFtraSlyaX_vYo6xA6lxke72PgVdU1wStCsPpy03Xr7XZFMVErqjgTQr6rLigRqmYNE-__uz9WVzkfcBlZoKa9qP51cbRhCtMOfY2jCRO6n-LfAfodoPXjnIybQ5zQ7zDv0W0yxz3axMLd7mOa6wdII_oBY0xPyMeENmDS2aobTM7BB2fO6uhRtw8TZCiUnRlKlDuNMM35U_XBmyHD1eu-rH59Wz903-vNz9u77mZTO47lXDsleo-5UgYYt8L3jbVWAHbYEiOVxNQ1xvPWlRG0F5wp63rsG2YsCG_ZZXW3-PbRHPQxhdGkJx1N0Gcgpp02aQ5uAE0JbyXQVrW45UaB4soYK1pOQVLrVfH6vHgdU_xzgjzrQzylqbyvKW8agYkkbWGxheVSzDmBf0slWL_0ppfe9Etv-rW3orpeVAEA3hRScskxYc9TbJWN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Guodong</creator><creator>Wang, Zhe</creator><creator>Ma, Yinglong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4902-0710</orcidid></search><sort><creationdate>2019</creationdate><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><author>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Electronic documents</topic><topic>Feature extraction</topic><topic>Graph LSTM</topic><topic>Information retrieval</topic><topic>judicial domain model</topic><topic>judicial field</topic><topic>Law</topic><topic>Learning</topic><topic>Legal documents</topic><topic>literature search</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Semantics</topic><topic>Short term</topic><topic>Support vector machines</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guodong</au><au>Wang, Zhe</au><au>Ma, Yinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139616</spage><epage>139627</epage><pages>139616-139627</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943668</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4902-0710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.139616-139627 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455601817 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Classification Electronic documents Feature extraction Graph LSTM Information retrieval judicial domain model judicial field Law Learning Legal documents literature search Ontologies Ontology Semantics Short term Support vector machines Text categorization |
title | Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Domain%20Knowledge%20Extraction%20With%20Graph%20Long%20Short-Term%20Memory%20for%20Learning%20Classification%20of%20Chinese%20Legal%20Documents&rft.jtitle=IEEE%20access&rft.au=Li,%20Guodong&rft.date=2019&rft.volume=7&rft.spage=139616&rft.epage=139627&rft.pages=139616-139627&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943668&rft_dat=%3Cproquest_doaj_%3E2455601817%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601817&rft_id=info:pmid/&rft_ieee_id=8848401&rft_doaj_id=oai_doaj_org_article_21478e2797074a9e949aab6742e82bf9&rfr_iscdi=true |