Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents

It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.139616-139627
Hauptverfasser: Li, Guodong, Wang, Zhe, Ma, Yinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139627
container_issue
container_start_page 139616
container_title IEEE access
container_volume 7
creator Li, Guodong
Wang, Zhe
Ma, Yinglong
description It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.
doi_str_mv 10.1109/ACCESS.2019.2943668
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455601817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8848401</ieee_id><doaj_id>oai_doaj_org_article_21478e2797074a9e949aab6742e82bf9</doaj_id><sourcerecordid>2455601817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz97qy7J0DO42DdnSw6b0KCR5tKvFtraSlyaX_vYo6xA6lxke72PgVdU1wStCsPpy03Xr7XZFMVErqjgTQr6rLigRqmYNE-__uz9WVzkfcBlZoKa9qP51cbRhCtMOfY2jCRO6n-LfAfodoPXjnIybQ5zQ7zDv0W0yxz3axMLd7mOa6wdII_oBY0xPyMeENmDS2aobTM7BB2fO6uhRtw8TZCiUnRlKlDuNMM35U_XBmyHD1eu-rH59Wz903-vNz9u77mZTO47lXDsleo-5UgYYt8L3jbVWAHbYEiOVxNQ1xvPWlRG0F5wp63rsG2YsCG_ZZXW3-PbRHPQxhdGkJx1N0Gcgpp02aQ5uAE0JbyXQVrW45UaB4soYK1pOQVLrVfH6vHgdU_xzgjzrQzylqbyvKW8agYkkbWGxheVSzDmBf0slWL_0ppfe9Etv-rW3orpeVAEA3hRScskxYc9TbJWN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601817</pqid></control><display><type>article</type><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</creator><creatorcontrib>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</creatorcontrib><description>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943668</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Electronic documents ; Feature extraction ; Graph LSTM ; Information retrieval ; judicial domain model ; judicial field ; Law ; Learning ; Legal documents ; literature search ; Ontologies ; Ontology ; Semantics ; Short term ; Support vector machines ; Text categorization</subject><ispartof>IEEE access, 2019, Vol.7, p.139616-139627</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</citedby><cites>FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</cites><orcidid>0000-0002-4902-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8848401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><title>IEEE access</title><addtitle>Access</addtitle><description>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</description><subject>Classification</subject><subject>Electronic documents</subject><subject>Feature extraction</subject><subject>Graph LSTM</subject><subject>Information retrieval</subject><subject>judicial domain model</subject><subject>judicial field</subject><subject>Law</subject><subject>Learning</subject><subject>Legal documents</subject><subject>literature search</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Semantics</subject><subject>Short term</subject><subject>Support vector machines</subject><subject>Text categorization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz97qy7J0DO42DdnSw6b0KCR5tKvFtraSlyaX_vYo6xA6lxke72PgVdU1wStCsPpy03Xr7XZFMVErqjgTQr6rLigRqmYNE-__uz9WVzkfcBlZoKa9qP51cbRhCtMOfY2jCRO6n-LfAfodoPXjnIybQ5zQ7zDv0W0yxz3axMLd7mOa6wdII_oBY0xPyMeENmDS2aobTM7BB2fO6uhRtw8TZCiUnRlKlDuNMM35U_XBmyHD1eu-rH59Wz903-vNz9u77mZTO47lXDsleo-5UgYYt8L3jbVWAHbYEiOVxNQ1xvPWlRG0F5wp63rsG2YsCG_ZZXW3-PbRHPQxhdGkJx1N0Gcgpp02aQ5uAE0JbyXQVrW45UaB4soYK1pOQVLrVfH6vHgdU_xzgjzrQzylqbyvKW8agYkkbWGxheVSzDmBf0slWL_0ppfe9Etv-rW3orpeVAEA3hRScskxYc9TbJWN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Guodong</creator><creator>Wang, Zhe</creator><creator>Ma, Yinglong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4902-0710</orcidid></search><sort><creationdate>2019</creationdate><title>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</title><author>Li, Guodong ; Wang, Zhe ; Ma, Yinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c96df0499ae34b6fd5bbb6e0c0b1a89802c5af47cccc62d6439bcd0f53abe6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Electronic documents</topic><topic>Feature extraction</topic><topic>Graph LSTM</topic><topic>Information retrieval</topic><topic>judicial domain model</topic><topic>judicial field</topic><topic>Law</topic><topic>Learning</topic><topic>Legal documents</topic><topic>literature search</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Semantics</topic><topic>Short term</topic><topic>Support vector machines</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guodong</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guodong</au><au>Wang, Zhe</au><au>Ma, Yinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139616</spage><epage>139627</epage><pages>139616-139627</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It is of great importance for procedure retrieval to find an effective classification method of Chinese legal documents with deep semantic understanding, as the electronic documents of Chinese law have massive volume and complex structure. In this paper, a method for learning Chinese legal document classification using Graph LSTM (Long Short-Term Memory) combined with domain knowledge extraction is proposed. First, the judicial domain model is constructed based on ontologies that include top-level ontology and domain-specific ontology. Second, the legal documents are divided into different knowledge blocks through top-level ontology and domain-specific ontology. Third, information is extracted from the knowledge blocks according to the legal domain model and stored in XML files. At last, Graph LSTM is applied for classification. The experiments show that compared with the traditional classification methods of support vector machine (SVM) and LSTM, Graph LSTM has higher classification accuracy and better classification performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943668</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4902-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.139616-139627
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455601817
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Classification
Electronic documents
Feature extraction
Graph LSTM
Information retrieval
judicial domain model
judicial field
Law
Learning
Legal documents
literature search
Ontologies
Ontology
Semantics
Short term
Support vector machines
Text categorization
title Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Domain%20Knowledge%20Extraction%20With%20Graph%20Long%20Short-Term%20Memory%20for%20Learning%20Classification%20of%20Chinese%20Legal%20Documents&rft.jtitle=IEEE%20access&rft.au=Li,%20Guodong&rft.date=2019&rft.volume=7&rft.spage=139616&rft.epage=139627&rft.pages=139616-139627&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943668&rft_dat=%3Cproquest_doaj_%3E2455601817%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601817&rft_id=info:pmid/&rft_ieee_id=8848401&rft_doaj_id=oai_doaj_org_article_21478e2797074a9e949aab6742e82bf9&rfr_iscdi=true