Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images

Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.106295-106306
Hauptverfasser: Xiong, Yiming, Shao, Feng, Meng, Xiangchao, Zhou, Bingzhong, Ho, Yo-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106306
container_issue
container_start_page 106295
container_title IEEE access
container_volume 7
creator Xiong, Yiming
Shao, Feng
Meng, Xiangchao
Zhou, Bingzhong
Ho, Yo-Sung
description Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ACCESS.2019.2932015
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455601220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8781939</ieee_id><doaj_id>oai_doaj_org_article_a762a328279b48289ddb6ea27a41a4e1</doaj_id><sourcerecordid>2455601220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoKNVP4CXgeWsy2d0kx1L8UyiKrp7DdHciW9qmJtuD397UFXEuMzx-7yXwGLuWYiqlsLez-fyuaaYgpJ2CVXlXJ-wCZG0LVan69N99zq5SWos8JkuVvmBvzR5jIv5K-0iJdgMOfdhxHyJ_CsUreYq0a4m_HHDTD198lhKltM0gD543ONAm68SbIYOBL7b4QemSnXncJLr63RP2fn_3Nn8sls8Pi_lsWbSlMEPR1h6BrACjPWCnfWWolLKEzkgNpfBtSxqQsBOrzlpqUYGqbAZkSVIZNWGLMbcLuHb72G8xfrmAvfsRQvxwGIe-3ZBDXUO2G9B2VRowtutWNSFoLCUe0ybsZszax_B5oDS4dTjEXf6-g7KqaiEBRKbUSLUxpBTJ_70qhTu24cY23LEN99tGdl2Prp6I_hxGG2mVVd_gY4Uy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601220</pqid></control><display><type>article</type><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</creator><creatorcontrib>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</creatorcontrib><description>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2932015</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>building detection ; Buildings ; Dictionaries ; Distortion ; Feature extraction ; Image quality ; Image resolution ; Indexes ; joint dictionary learning ; Learning ; No-reference (NR) quality assessment ; Quality assessment ; Remote sensing ; Satellite imagery ; satellite stereo image (SSI) ; Satellites ; sparse representation</subject><ispartof>IEEE access, 2019, Vol.7, p.106295-106306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</citedby><cites>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</cites><orcidid>0000-0002-2495-9924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8781939$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Xiong, Yiming</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Zhou, Bingzhong</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</description><subject>building detection</subject><subject>Buildings</subject><subject>Dictionaries</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Indexes</subject><subject>joint dictionary learning</subject><subject>Learning</subject><subject>No-reference (NR) quality assessment</subject><subject>Quality assessment</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>satellite stereo image (SSI)</subject><subject>Satellites</subject><subject>sparse representation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxYMoKNVP4CXgeWsy2d0kx1L8UyiKrp7DdHciW9qmJtuD397UFXEuMzx-7yXwGLuWYiqlsLez-fyuaaYgpJ2CVXlXJ-wCZG0LVan69N99zq5SWos8JkuVvmBvzR5jIv5K-0iJdgMOfdhxHyJ_CsUreYq0a4m_HHDTD198lhKltM0gD543ONAm68SbIYOBL7b4QemSnXncJLr63RP2fn_3Nn8sls8Pi_lsWbSlMEPR1h6BrACjPWCnfWWolLKEzkgNpfBtSxqQsBOrzlpqUYGqbAZkSVIZNWGLMbcLuHb72G8xfrmAvfsRQvxwGIe-3ZBDXUO2G9B2VRowtutWNSFoLCUe0ybsZszax_B5oDS4dTjEXf6-g7KqaiEBRKbUSLUxpBTJ_70qhTu24cY23LEN99tGdl2Prp6I_hxGG2mVVd_gY4Uy</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xiong, Yiming</creator><creator>Shao, Feng</creator><creator>Meng, Xiangchao</creator><creator>Zhou, Bingzhong</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid></search><sort><creationdate>2019</creationdate><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><author>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>building detection</topic><topic>Buildings</topic><topic>Dictionaries</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Indexes</topic><topic>joint dictionary learning</topic><topic>Learning</topic><topic>No-reference (NR) quality assessment</topic><topic>Quality assessment</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>satellite stereo image (SSI)</topic><topic>Satellites</topic><topic>sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yiming</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Zhou, Bingzhong</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yiming</au><au>Shao, Feng</au><au>Meng, Xiangchao</au><au>Zhou, Bingzhong</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>106295</spage><epage>106306</epage><pages>106295-106306</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2932015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.106295-106306
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455601220
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects building detection
Buildings
Dictionaries
Distortion
Feature extraction
Image quality
Image resolution
Indexes
joint dictionary learning
Learning
No-reference (NR) quality assessment
Quality assessment
Remote sensing
Satellite imagery
satellite stereo image (SSI)
Satellites
sparse representation
title Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Representation%20for%20No-Reference%20Quality%20Assessment%20of%20Satellite%20Stereo%20Images&rft.jtitle=IEEE%20access&rft.au=Xiong,%20Yiming&rft.date=2019&rft.volume=7&rft.spage=106295&rft.epage=106306&rft.pages=106295-106306&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2932015&rft_dat=%3Cproquest_doaj_%3E2455601220%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601220&rft_id=info:pmid/&rft_ieee_id=8781939&rft_doaj_id=oai_doaj_org_article_a762a328279b48289ddb6ea27a41a4e1&rfr_iscdi=true