Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images
Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resol...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.106295-106306 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106306 |
---|---|
container_issue | |
container_start_page | 106295 |
container_title | IEEE access |
container_volume | 7 |
creator | Xiong, Yiming Shao, Feng Meng, Xiangchao Zhou, Bingzhong Ho, Yo-Sung |
description | Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2019.2932015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455601220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8781939</ieee_id><doaj_id>oai_doaj_org_article_a762a328279b48289ddb6ea27a41a4e1</doaj_id><sourcerecordid>2455601220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoKNVP4CXgeWsy2d0kx1L8UyiKrp7DdHciW9qmJtuD397UFXEuMzx-7yXwGLuWYiqlsLez-fyuaaYgpJ2CVXlXJ-wCZG0LVan69N99zq5SWos8JkuVvmBvzR5jIv5K-0iJdgMOfdhxHyJ_CsUreYq0a4m_HHDTD198lhKltM0gD543ONAm68SbIYOBL7b4QemSnXncJLr63RP2fn_3Nn8sls8Pi_lsWbSlMEPR1h6BrACjPWCnfWWolLKEzkgNpfBtSxqQsBOrzlpqUYGqbAZkSVIZNWGLMbcLuHb72G8xfrmAvfsRQvxwGIe-3ZBDXUO2G9B2VRowtutWNSFoLCUe0ybsZszax_B5oDS4dTjEXf6-g7KqaiEBRKbUSLUxpBTJ_70qhTu24cY23LEN99tGdl2Prp6I_hxGG2mVVd_gY4Uy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455601220</pqid></control><display><type>article</type><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</creator><creatorcontrib>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</creatorcontrib><description>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2932015</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>building detection ; Buildings ; Dictionaries ; Distortion ; Feature extraction ; Image quality ; Image resolution ; Indexes ; joint dictionary learning ; Learning ; No-reference (NR) quality assessment ; Quality assessment ; Remote sensing ; Satellite imagery ; satellite stereo image (SSI) ; Satellites ; sparse representation</subject><ispartof>IEEE access, 2019, Vol.7, p.106295-106306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</citedby><cites>FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</cites><orcidid>0000-0002-2495-9924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8781939$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Xiong, Yiming</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Zhou, Bingzhong</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</description><subject>building detection</subject><subject>Buildings</subject><subject>Dictionaries</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Indexes</subject><subject>joint dictionary learning</subject><subject>Learning</subject><subject>No-reference (NR) quality assessment</subject><subject>Quality assessment</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>satellite stereo image (SSI)</subject><subject>Satellites</subject><subject>sparse representation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxYMoKNVP4CXgeWsy2d0kx1L8UyiKrp7DdHciW9qmJtuD397UFXEuMzx-7yXwGLuWYiqlsLez-fyuaaYgpJ2CVXlXJ-wCZG0LVan69N99zq5SWos8JkuVvmBvzR5jIv5K-0iJdgMOfdhxHyJ_CsUreYq0a4m_HHDTD198lhKltM0gD543ONAm68SbIYOBL7b4QemSnXncJLr63RP2fn_3Nn8sls8Pi_lsWbSlMEPR1h6BrACjPWCnfWWolLKEzkgNpfBtSxqQsBOrzlpqUYGqbAZkSVIZNWGLMbcLuHb72G8xfrmAvfsRQvxwGIe-3ZBDXUO2G9B2VRowtutWNSFoLCUe0ybsZszax_B5oDS4dTjEXf6-g7KqaiEBRKbUSLUxpBTJ_70qhTu24cY23LEN99tGdl2Prp6I_hxGG2mVVd_gY4Uy</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xiong, Yiming</creator><creator>Shao, Feng</creator><creator>Meng, Xiangchao</creator><creator>Zhou, Bingzhong</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid></search><sort><creationdate>2019</creationdate><title>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</title><author>Xiong, Yiming ; Shao, Feng ; Meng, Xiangchao ; Zhou, Bingzhong ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c6fa2e90287f2ad7f58e41142d817240fcce72aead0bd99eca3235914214e1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>building detection</topic><topic>Buildings</topic><topic>Dictionaries</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Indexes</topic><topic>joint dictionary learning</topic><topic>Learning</topic><topic>No-reference (NR) quality assessment</topic><topic>Quality assessment</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>satellite stereo image (SSI)</topic><topic>Satellites</topic><topic>sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yiming</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Zhou, Bingzhong</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yiming</au><au>Shao, Feng</au><au>Meng, Xiangchao</au><au>Zhou, Bingzhong</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>106295</spage><epage>106306</epage><pages>106295-106306</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Different from natural image quality assessment methods, satellite stereo images have different requirements on quality in different application scenarios, which poses a huge challenge to establish a suitable objective evaluation model. In this paper, we focus on the quality evaluation of high resolution panchromatic (satellite stereo) images in specific application scenarios of building detection. First, we build a new satellite stereo image database (SSID), which consists of 400 distorted source satellite stereo images (SSIs) generated from the 20-source SSIs with two distortion types and 10-distortion strengths. We use detection accuracy scores to represent the quality of the SSIs, which is obtained through building detection, not subjective testing. We then propose an objective evaluation model based on joint dictionary learning. In the training phase, we bridge the features of the SSIs and the corresponding detection accuracy scores through joint dictionary learning. In the testing phase, we used sparse coding to get the quality of the testing image. The experimental results demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2932015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.106295-106306 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455601220 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | building detection Buildings Dictionaries Distortion Feature extraction Image quality Image resolution Indexes joint dictionary learning Learning No-reference (NR) quality assessment Quality assessment Remote sensing Satellite imagery satellite stereo image (SSI) Satellites sparse representation |
title | Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Representation%20for%20No-Reference%20Quality%20Assessment%20of%20Satellite%20Stereo%20Images&rft.jtitle=IEEE%20access&rft.au=Xiong,%20Yiming&rft.date=2019&rft.volume=7&rft.spage=106295&rft.epage=106306&rft.pages=106295-106306&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2932015&rft_dat=%3Cproquest_doaj_%3E2455601220%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455601220&rft_id=info:pmid/&rft_ieee_id=8781939&rft_doaj_id=oai_doaj_org_article_a762a328279b48289ddb6ea27a41a4e1&rfr_iscdi=true |