Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole
We propose and discuss the elastic wave attenuation of hollow metamaterial beam embedded acoustic black hole. More abundant physical phenomena are given by modal analysis, shows that the band gap of three-dimensional acoustic black hole metamaterial is different from two-dimensional one. Lateral fle...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.124141-124146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124146 |
---|---|
container_issue | |
container_start_page | 124141 |
container_title | IEEE access |
container_volume | 7 |
creator | Gao, Nan-Sha Guo, Xin-Yu Cheng, Bao-Zhu Zhang, Yan-Ni Wei, Zheng-Yu Hou, Hong |
description | We propose and discuss the elastic wave attenuation of hollow metamaterial beam embedded acoustic black hole. More abundant physical phenomena are given by modal analysis, shows that the band gap of three-dimensional acoustic black hole metamaterial is different from two-dimensional one. Lateral flexural vibrations occurs and make the original first two-dimensional band gap be compressed, and the opening of first three-dimensional band gap are caused by coupling effect between the longitudinal and lateral flexural vibrations. Below 1200Hz, only two band gaps exist, the geometric parameter m1 and angle \gamma could affect the band structure a lot, while the effect of geometric parameter m0 is a little less. Mutual validation of transmission spectra of vibration test and finite element analysis calculation and band gaps, illustrating its validity of the structure design, corresponding results could stimulate the realizations of three-dimensional acoustic black hole structure, particularly paves the way for the bridge from the corresponding theory of low frequency vibration and noise reduction to the practical application. |
doi_str_mv | 10.1109/ACCESS.2019.2938250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455596630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8819884</ieee_id><doaj_id>oai_doaj_org_article_37b523910fde4eab9a23e3ee313fa25e</doaj_id><sourcerecordid>2455596630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-503a81437c2e873966f237e716379e5d9a7c08f43a221717024ef1ba08f877313</originalsourceid><addsrcrecordid>eNpNUcFOwkAQbYwmEuULuDTxDO7udLu7R2hQSCAe0HDcDGWqxcLitmj8exdKiHOZyct7b17yoqjH2YBzZh6HWTZeLAaCcTMQBrSQ7CrqCJ6aPkhIr__dt1G3rjcsjA6QVJ1oNq6wbso8XuI3xXO3PlTYlG4Xl7t44qrK_cRzanCLDfkSq3hEuI2XZfMRD3N3OClHFeafRzLdRzcFVjV1z_suensav2aT_uzleZoNZ_08YbrpSwaoeQIqF6QVmDQtBChSPAVlSK4NqpzpIgEUgiuumEio4CsMmFYKONxF09Z37XBj977cov-1Dkt7Apx_t-hDtIosqJUUYDgr1pQQrgwKICAKLgUKScHrofXae_d1oLqxG3fwuxDfikRKGdIBCyxoWbl3de2puHzlzB5bsG0L9tiCPbcQVL1WVRLRRaE1N1on8Ae2UIB5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455596630</pqid></control><display><type>article</type><title>Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Nan-Sha ; Guo, Xin-Yu ; Cheng, Bao-Zhu ; Zhang, Yan-Ni ; Wei, Zheng-Yu ; Hou, Hong</creator><creatorcontrib>Gao, Nan-Sha ; Guo, Xin-Yu ; Cheng, Bao-Zhu ; Zhang, Yan-Ni ; Wei, Zheng-Yu ; Hou, Hong</creatorcontrib><description>We propose and discuss the elastic wave attenuation of hollow metamaterial beam embedded acoustic black hole. More abundant physical phenomena are given by modal analysis, shows that the band gap of three-dimensional acoustic black hole metamaterial is different from two-dimensional one. Lateral flexural vibrations occurs and make the original first two-dimensional band gap be compressed, and the opening of first three-dimensional band gap are caused by coupling effect between the longitudinal and lateral flexural vibrations. Below 1200Hz, only two band gaps exist, the geometric parameter m1 and angle <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> could affect the band structure a lot, while the effect of geometric parameter m0 is a little less. Mutual validation of transmission spectra of vibration test and finite element analysis calculation and band gaps, illustrating its validity of the structure design, corresponding results could stimulate the realizations of three-dimensional acoustic black hole structure, particularly paves the way for the bridge from the corresponding theory of low frequency vibration and noise reduction to the practical application.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2938250</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic attenuation ; Acoustic beams ; Acoustic black hole ; Acoustic noise ; Acoustics ; Attenuation ; band gap ; Black holes ; Elastic waves ; Energy gap ; Finite element method ; Mathematical analysis ; metamaterial beam ; Metamaterials ; Modal analysis ; Noise reduction ; Parameters ; Photonic band gap ; Solid modeling ; Vibration analysis ; vibration test ; Vibration tests ; Vibrations ; Wave attenuation</subject><ispartof>IEEE access, 2019, Vol.7, p.124141-124146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-503a81437c2e873966f237e716379e5d9a7c08f43a221717024ef1ba08f877313</citedby><cites>FETCH-LOGICAL-c408t-503a81437c2e873966f237e716379e5d9a7c08f43a221717024ef1ba08f877313</cites><orcidid>0000-0002-4633-7050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8819884$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gao, Nan-Sha</creatorcontrib><creatorcontrib>Guo, Xin-Yu</creatorcontrib><creatorcontrib>Cheng, Bao-Zhu</creatorcontrib><creatorcontrib>Zhang, Yan-Ni</creatorcontrib><creatorcontrib>Wei, Zheng-Yu</creatorcontrib><creatorcontrib>Hou, Hong</creatorcontrib><title>Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose and discuss the elastic wave attenuation of hollow metamaterial beam embedded acoustic black hole. More abundant physical phenomena are given by modal analysis, shows that the band gap of three-dimensional acoustic black hole metamaterial is different from two-dimensional one. Lateral flexural vibrations occurs and make the original first two-dimensional band gap be compressed, and the opening of first three-dimensional band gap are caused by coupling effect between the longitudinal and lateral flexural vibrations. Below 1200Hz, only two band gaps exist, the geometric parameter m1 and angle <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> could affect the band structure a lot, while the effect of geometric parameter m0 is a little less. Mutual validation of transmission spectra of vibration test and finite element analysis calculation and band gaps, illustrating its validity of the structure design, corresponding results could stimulate the realizations of three-dimensional acoustic black hole structure, particularly paves the way for the bridge from the corresponding theory of low frequency vibration and noise reduction to the practical application.</description><subject>Acoustic attenuation</subject><subject>Acoustic beams</subject><subject>Acoustic black hole</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Attenuation</subject><subject>band gap</subject><subject>Black holes</subject><subject>Elastic waves</subject><subject>Energy gap</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>metamaterial beam</subject><subject>Metamaterials</subject><subject>Modal analysis</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Photonic band gap</subject><subject>Solid modeling</subject><subject>Vibration analysis</subject><subject>vibration test</subject><subject>Vibration tests</subject><subject>Vibrations</subject><subject>Wave attenuation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwkAQbYwmEuULuDTxDO7udLu7R2hQSCAe0HDcDGWqxcLitmj8exdKiHOZyct7b17yoqjH2YBzZh6HWTZeLAaCcTMQBrSQ7CrqCJ6aPkhIr__dt1G3rjcsjA6QVJ1oNq6wbso8XuI3xXO3PlTYlG4Xl7t44qrK_cRzanCLDfkSq3hEuI2XZfMRD3N3OClHFeafRzLdRzcFVjV1z_suensav2aT_uzleZoNZ_08YbrpSwaoeQIqF6QVmDQtBChSPAVlSK4NqpzpIgEUgiuumEio4CsMmFYKONxF09Z37XBj977cov-1Dkt7Apx_t-hDtIosqJUUYDgr1pQQrgwKICAKLgUKScHrofXae_d1oLqxG3fwuxDfikRKGdIBCyxoWbl3de2puHzlzB5bsG0L9tiCPbcQVL1WVRLRRaE1N1on8Ae2UIB5</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gao, Nan-Sha</creator><creator>Guo, Xin-Yu</creator><creator>Cheng, Bao-Zhu</creator><creator>Zhang, Yan-Ni</creator><creator>Wei, Zheng-Yu</creator><creator>Hou, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4633-7050</orcidid></search><sort><creationdate>2019</creationdate><title>Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole</title><author>Gao, Nan-Sha ; Guo, Xin-Yu ; Cheng, Bao-Zhu ; Zhang, Yan-Ni ; Wei, Zheng-Yu ; Hou, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-503a81437c2e873966f237e716379e5d9a7c08f43a221717024ef1ba08f877313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic beams</topic><topic>Acoustic black hole</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Attenuation</topic><topic>band gap</topic><topic>Black holes</topic><topic>Elastic waves</topic><topic>Energy gap</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>metamaterial beam</topic><topic>Metamaterials</topic><topic>Modal analysis</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Photonic band gap</topic><topic>Solid modeling</topic><topic>Vibration analysis</topic><topic>vibration test</topic><topic>Vibration tests</topic><topic>Vibrations</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Nan-Sha</creatorcontrib><creatorcontrib>Guo, Xin-Yu</creatorcontrib><creatorcontrib>Cheng, Bao-Zhu</creatorcontrib><creatorcontrib>Zhang, Yan-Ni</creatorcontrib><creatorcontrib>Wei, Zheng-Yu</creatorcontrib><creatorcontrib>Hou, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Nan-Sha</au><au>Guo, Xin-Yu</au><au>Cheng, Bao-Zhu</au><au>Zhang, Yan-Ni</au><au>Wei, Zheng-Yu</au><au>Hou, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>124141</spage><epage>124146</epage><pages>124141-124146</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose and discuss the elastic wave attenuation of hollow metamaterial beam embedded acoustic black hole. More abundant physical phenomena are given by modal analysis, shows that the band gap of three-dimensional acoustic black hole metamaterial is different from two-dimensional one. Lateral flexural vibrations occurs and make the original first two-dimensional band gap be compressed, and the opening of first three-dimensional band gap are caused by coupling effect between the longitudinal and lateral flexural vibrations. Below 1200Hz, only two band gaps exist, the geometric parameter m1 and angle <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> could affect the band structure a lot, while the effect of geometric parameter m0 is a little less. Mutual validation of transmission spectra of vibration test and finite element analysis calculation and band gaps, illustrating its validity of the structure design, corresponding results could stimulate the realizations of three-dimensional acoustic black hole structure, particularly paves the way for the bridge from the corresponding theory of low frequency vibration and noise reduction to the practical application.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2938250</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4633-7050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.124141-124146 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455596630 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acoustic attenuation Acoustic beams Acoustic black hole Acoustic noise Acoustics Attenuation band gap Black holes Elastic waves Energy gap Finite element method Mathematical analysis metamaterial beam Metamaterials Modal analysis Noise reduction Parameters Photonic band gap Solid modeling Vibration analysis vibration test Vibration tests Vibrations Wave attenuation |
title | Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20Wave%20Modulation%20in%20Hollow%20Metamaterial%20Beam%20With%20Acoustic%20Black%20Hole&rft.jtitle=IEEE%20access&rft.au=Gao,%20Nan-Sha&rft.date=2019&rft.volume=7&rft.spage=124141&rft.epage=124146&rft.pages=124141-124146&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2938250&rft_dat=%3Cproquest_ieee_%3E2455596630%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455596630&rft_id=info:pmid/&rft_ieee_id=8819884&rft_doaj_id=oai_doaj_org_article_37b523910fde4eab9a23e3ee313fa25e&rfr_iscdi=true |