Dynamic ARMA-Based Background Subtraction for Moving Objects Detection

Background subtraction is a prevailing method for moving object detection in videos with stationary backgrounds. However, accurate and real-time moving object detection is challenging in the presence of complex dynamic scenes. This paper presents a novel technique for background subtraction based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.128659-128668
Hauptverfasser: Li, Jian, Pan, Zhong-Ming, Zhang, Zhuo-Hang, Zhang, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128668
container_issue
container_start_page 128659
container_title IEEE access
container_volume 7
creator Li, Jian
Pan, Zhong-Ming
Zhang, Zhuo-Hang
Zhang, Heng
description Background subtraction is a prevailing method for moving object detection in videos with stationary backgrounds. However, accurate and real-time moving object detection is challenging in the presence of complex dynamic scenes. This paper presents a novel technique for background subtraction based on the dynamic autoregressive moving average (ARMA) model. Specifically, we utilize the temporal and spatial correlation of images in a video sequence to model each pixel to accurately model the background image's dynamic characteristics. In addition, we apply an adaptive least mean square (LMS) scheme to update the parameters of the background model to offset the dramatically dynamic characteristic of the background. The proposed algorithm is evaluated on two publicly available benchmark datasets with complex dynamic backgrounds. The experimental results show that this technique is robust and effective for background subtraction in complex dynamic backgrounds and is a promising moving object detection scheme for real-time visual surveillance.
doi_str_mv 10.1109/ACCESS.2019.2939672
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455594664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8825794</ieee_id><doaj_id>oai_doaj_org_article_3eeedb7a05934dd7ac968e96b4453cf1</doaj_id><sourcerecordid>2455594664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2c6ca8c2036060131adfc9af23ca868d971e08c39ed9720d49321e45866ae2333</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeAn0HLvf2T3GqK2gCLU9L5vdjSTVrN3Egv--qynSuczwZt6bx4uiMQQTCIF4yfJ8vt1OEIBiggQWLEV30QBBJhJMMbv_Nz9Go7atQSgeIJoOosXs3KhDpePsfZ0lU9VaE0-V_tp5d2pMvD0VnVe6q1wTl87Ha_dTNbt4U9RWd208s529Lp-ih1LtWzv668PoczH_yN-S1eZ1mWerRBPAuwRpphXXCGAGGIAYKlNqoUqEA8y4ESm0gGssbBgRMERgBC2hnDFlEcZ4GC17XeNULY--Oih_lk5V8go4v5PKd5XeW4mttaZIFaACE2NSpQXjVrCCEIp1CYPWc6919O77ZNtO1u7km2BfIkIpFYQxEq5wf6W9a1tvy9tXCOQlf9nnLy_5y7_8A2vcs6rg4sbgHNFUEPwLQXJ_dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455594664</pqid></control><display><type>article</type><title>Dynamic ARMA-Based Background Subtraction for Moving Objects Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Jian ; Pan, Zhong-Ming ; Zhang, Zhuo-Hang ; Zhang, Heng</creator><creatorcontrib>Li, Jian ; Pan, Zhong-Ming ; Zhang, Zhuo-Hang ; Zhang, Heng</creatorcontrib><description>Background subtraction is a prevailing method for moving object detection in videos with stationary backgrounds. However, accurate and real-time moving object detection is challenging in the presence of complex dynamic scenes. This paper presents a novel technique for background subtraction based on the dynamic autoregressive moving average (ARMA) model. Specifically, we utilize the temporal and spatial correlation of images in a video sequence to model each pixel to accurately model the background image's dynamic characteristics. In addition, we apply an adaptive least mean square (LMS) scheme to update the parameters of the background model to offset the dramatically dynamic characteristic of the background. The proposed algorithm is evaluated on two publicly available benchmark datasets with complex dynamic backgrounds. The experimental results show that this technique is robust and effective for background subtraction in complex dynamic backgrounds and is a promising moving object detection scheme for real-time visual surveillance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2939672</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; adaptive LMS ; Algorithms ; ARMA model ; Autoregressive models ; Autoregressive moving average ; Autoregressive moving-average models ; Autoregressive processes ; Background subtraction ; Computational modeling ; Dynamic characteristics ; Heuristic algorithms ; image segmentation ; moving object detection ; Moving object recognition ; Object detection ; Real time ; Real-time systems ; real-time visual surveillance ; Subtraction ; Surveillance</subject><ispartof>IEEE access, 2019, Vol.7, p.128659-128668</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2c6ca8c2036060131adfc9af23ca868d971e08c39ed9720d49321e45866ae2333</citedby><cites>FETCH-LOGICAL-c408t-2c6ca8c2036060131adfc9af23ca868d971e08c39ed9720d49321e45866ae2333</cites><orcidid>0000-0001-9091-2975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8825794$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Pan, Zhong-Ming</creatorcontrib><creatorcontrib>Zhang, Zhuo-Hang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><title>Dynamic ARMA-Based Background Subtraction for Moving Objects Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Background subtraction is a prevailing method for moving object detection in videos with stationary backgrounds. However, accurate and real-time moving object detection is challenging in the presence of complex dynamic scenes. This paper presents a novel technique for background subtraction based on the dynamic autoregressive moving average (ARMA) model. Specifically, we utilize the temporal and spatial correlation of images in a video sequence to model each pixel to accurately model the background image's dynamic characteristics. In addition, we apply an adaptive least mean square (LMS) scheme to update the parameters of the background model to offset the dramatically dynamic characteristic of the background. The proposed algorithm is evaluated on two publicly available benchmark datasets with complex dynamic backgrounds. The experimental results show that this technique is robust and effective for background subtraction in complex dynamic backgrounds and is a promising moving object detection scheme for real-time visual surveillance.</description><subject>Adaptation models</subject><subject>adaptive LMS</subject><subject>Algorithms</subject><subject>ARMA model</subject><subject>Autoregressive models</subject><subject>Autoregressive moving average</subject><subject>Autoregressive moving-average models</subject><subject>Autoregressive processes</subject><subject>Background subtraction</subject><subject>Computational modeling</subject><subject>Dynamic characteristics</subject><subject>Heuristic algorithms</subject><subject>image segmentation</subject><subject>moving object detection</subject><subject>Moving object recognition</subject><subject>Object detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>real-time visual surveillance</subject><subject>Subtraction</subject><subject>Surveillance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeAn0HLvf2T3GqK2gCLU9L5vdjSTVrN3Egv--qynSuczwZt6bx4uiMQQTCIF4yfJ8vt1OEIBiggQWLEV30QBBJhJMMbv_Nz9Go7atQSgeIJoOosXs3KhDpePsfZ0lU9VaE0-V_tp5d2pMvD0VnVe6q1wTl87Ha_dTNbt4U9RWd208s529Lp-ih1LtWzv668PoczH_yN-S1eZ1mWerRBPAuwRpphXXCGAGGIAYKlNqoUqEA8y4ESm0gGssbBgRMERgBC2hnDFlEcZ4GC17XeNULY--Oih_lk5V8go4v5PKd5XeW4mttaZIFaACE2NSpQXjVrCCEIp1CYPWc6919O77ZNtO1u7km2BfIkIpFYQxEq5wf6W9a1tvy9tXCOQlf9nnLy_5y7_8A2vcs6rg4sbgHNFUEPwLQXJ_dw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Jian</creator><creator>Pan, Zhong-Ming</creator><creator>Zhang, Zhuo-Hang</creator><creator>Zhang, Heng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9091-2975</orcidid></search><sort><creationdate>2019</creationdate><title>Dynamic ARMA-Based Background Subtraction for Moving Objects Detection</title><author>Li, Jian ; Pan, Zhong-Ming ; Zhang, Zhuo-Hang ; Zhang, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2c6ca8c2036060131adfc9af23ca868d971e08c39ed9720d49321e45866ae2333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>adaptive LMS</topic><topic>Algorithms</topic><topic>ARMA model</topic><topic>Autoregressive models</topic><topic>Autoregressive moving average</topic><topic>Autoregressive moving-average models</topic><topic>Autoregressive processes</topic><topic>Background subtraction</topic><topic>Computational modeling</topic><topic>Dynamic characteristics</topic><topic>Heuristic algorithms</topic><topic>image segmentation</topic><topic>moving object detection</topic><topic>Moving object recognition</topic><topic>Object detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>real-time visual surveillance</topic><topic>Subtraction</topic><topic>Surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Pan, Zhong-Ming</creatorcontrib><creatorcontrib>Zhang, Zhuo-Hang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian</au><au>Pan, Zhong-Ming</au><au>Zhang, Zhuo-Hang</au><au>Zhang, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic ARMA-Based Background Subtraction for Moving Objects Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>128659</spage><epage>128668</epage><pages>128659-128668</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Background subtraction is a prevailing method for moving object detection in videos with stationary backgrounds. However, accurate and real-time moving object detection is challenging in the presence of complex dynamic scenes. This paper presents a novel technique for background subtraction based on the dynamic autoregressive moving average (ARMA) model. Specifically, we utilize the temporal and spatial correlation of images in a video sequence to model each pixel to accurately model the background image's dynamic characteristics. In addition, we apply an adaptive least mean square (LMS) scheme to update the parameters of the background model to offset the dramatically dynamic characteristic of the background. The proposed algorithm is evaluated on two publicly available benchmark datasets with complex dynamic backgrounds. The experimental results show that this technique is robust and effective for background subtraction in complex dynamic backgrounds and is a promising moving object detection scheme for real-time visual surveillance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2939672</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9091-2975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.128659-128668
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455594664
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
adaptive LMS
Algorithms
ARMA model
Autoregressive models
Autoregressive moving average
Autoregressive moving-average models
Autoregressive processes
Background subtraction
Computational modeling
Dynamic characteristics
Heuristic algorithms
image segmentation
moving object detection
Moving object recognition
Object detection
Real time
Real-time systems
real-time visual surveillance
Subtraction
Surveillance
title Dynamic ARMA-Based Background Subtraction for Moving Objects Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20ARMA-Based%20Background%20Subtraction%20for%20Moving%20Objects%20Detection&rft.jtitle=IEEE%20access&rft.au=Li,%20Jian&rft.date=2019&rft.volume=7&rft.spage=128659&rft.epage=128668&rft.pages=128659-128668&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2939672&rft_dat=%3Cproquest_ieee_%3E2455594664%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455594664&rft_id=info:pmid/&rft_ieee_id=8825794&rft_doaj_id=oai_doaj_org_article_3eeedb7a05934dd7ac968e96b4453cf1&rfr_iscdi=true