Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model

Scientific literature summarization aims to summarize related papers into a survey. It can help researchers, especially newcomers, to quickly know the current situation of their professional area from massive literature. Since the structure of documents is very important for scientific literature su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.185290-185300
Hauptverfasser: Xu, Huiyan, Wang, Zhijian, Weng, Xiaolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185300
container_issue
container_start_page 185290
container_title IEEE access
container_volume 7
creator Xu, Huiyan
Wang, Zhijian
Weng, Xiaolan
description Scientific literature summarization aims to summarize related papers into a survey. It can help researchers, especially newcomers, to quickly know the current situation of their professional area from massive literature. Since the structure of documents is very important for scientific literature summarization, and it is obviously observed that there is a relationship and semantic information hidden in document structures of scientific literature, therefore, we employ a hierarchical attention model to learn document structure from all the papers for summarization. In particular, we utilize attention mechanism to capture relations among document structure and learn semantic information on document discourse levels, and judge the importance of each sentence according to its surroundings by the information obtained. Moreover, we automatically construct a scientific literature data set consisting of surveys and their references. We evaluate our proposed model on this dataset with ROUGE metrics, experiments prove that our approach is effective, and our model outperforms several baselines.
doi_str_mv 10.1109/ACCESS.2019.2960611
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455593595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937799</ieee_id><doaj_id>oai_doaj_org_article_9c6d0626ba0f45cd90ef4880a71420ad</doaj_id><sourcerecordid>2455593595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-60fe1fe3bd7c3da1d7027352e5f1e5b8cd2650e10b91e5596f89502911bcfbe03</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOon8FLwvOskadLmuKx_VljxUD1KSJOJZtltNE0P-unNWhHnksnwfm8GXlFcEJgTAvJqsVzetO2cApFzKgUIQg6KE0qEnDHOxOG__rg4H4YN5GryiNcnxUtrPPbJO2_KtU8YdRojlu242-nov3TyoS-fB9-_ltfBjLusLdsUR_Mj070tVz5D0bx5o7flIqW9W2YegsXtWXHk9HbA89_3tHi-vXlarmbrx7v75WI9MxU0aSbAIXHIOlsbZjWxNdCacYrcEeRdYywVHJBAJ_OfS-EayYFKQjrjOgR2WtxPvjbojXqPPh__qYL26mcQ4qvSMXmzRSWNsCCo6DS4ihsrAV3VNKBrUlHQNntdTl7vMXyMOCS1CWPs8_mKVjxvZ1zyrGKTysQwDBHd31YCah-LmmJR-1jUbyyZupgoj4h_RCNZXUvJvgGo_omo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455593595</pqid></control><display><type>article</type><title>Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Huiyan ; Wang, Zhijian ; Weng, Xiaolan</creator><creatorcontrib>Xu, Huiyan ; Wang, Zhijian ; Weng, Xiaolan</creatorcontrib><description>Scientific literature summarization aims to summarize related papers into a survey. It can help researchers, especially newcomers, to quickly know the current situation of their professional area from massive literature. Since the structure of documents is very important for scientific literature summarization, and it is obviously observed that there is a relationship and semantic information hidden in document structures of scientific literature, therefore, we employ a hierarchical attention model to learn document structure from all the papers for summarization. In particular, we utilize attention mechanism to capture relations among document structure and learn semantic information on document discourse levels, and judge the importance of each sentence according to its surroundings by the information obtained. Moreover, we automatically construct a scientific literature data set consisting of surveys and their references. We evaluate our proposed model on this dataset with ROUGE metrics, experiments prove that our approach is effective, and our model outperforms several baselines.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960611</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attention mechanism ; Computational modeling ; Feature extraction ; Hidden Markov models ; natural document structure ; Neural networks ; Periodic structures ; Semantics ; sentence classification ; Structural hierarchy ; Task analysis ; Topic survey</subject><ispartof>IEEE access, 2019, Vol.7, p.185290-185300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-60fe1fe3bd7c3da1d7027352e5f1e5b8cd2650e10b91e5596f89502911bcfbe03</citedby><cites>FETCH-LOGICAL-c408t-60fe1fe3bd7c3da1d7027352e5f1e5b8cd2650e10b91e5596f89502911bcfbe03</cites><orcidid>0000-0001-8557-4887 ; 0000-0002-0905-7068 ; 0000-0002-4985-5208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937799$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xu, Huiyan</creatorcontrib><creatorcontrib>Wang, Zhijian</creatorcontrib><creatorcontrib>Weng, Xiaolan</creatorcontrib><title>Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Scientific literature summarization aims to summarize related papers into a survey. It can help researchers, especially newcomers, to quickly know the current situation of their professional area from massive literature. Since the structure of documents is very important for scientific literature summarization, and it is obviously observed that there is a relationship and semantic information hidden in document structures of scientific literature, therefore, we employ a hierarchical attention model to learn document structure from all the papers for summarization. In particular, we utilize attention mechanism to capture relations among document structure and learn semantic information on document discourse levels, and judge the importance of each sentence according to its surroundings by the information obtained. Moreover, we automatically construct a scientific literature data set consisting of surveys and their references. We evaluate our proposed model on this dataset with ROUGE metrics, experiments prove that our approach is effective, and our model outperforms several baselines.</description><subject>attention mechanism</subject><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>natural document structure</subject><subject>Neural networks</subject><subject>Periodic structures</subject><subject>Semantics</subject><subject>sentence classification</subject><subject>Structural hierarchy</subject><subject>Task analysis</subject><subject>Topic survey</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LxDAQxYsoKOon8FLwvOskadLmuKx_VljxUD1KSJOJZtltNE0P-unNWhHnksnwfm8GXlFcEJgTAvJqsVzetO2cApFzKgUIQg6KE0qEnDHOxOG__rg4H4YN5GryiNcnxUtrPPbJO2_KtU8YdRojlu242-nov3TyoS-fB9-_ltfBjLusLdsUR_Mj070tVz5D0bx5o7flIqW9W2YegsXtWXHk9HbA89_3tHi-vXlarmbrx7v75WI9MxU0aSbAIXHIOlsbZjWxNdCacYrcEeRdYywVHJBAJ_OfS-EayYFKQjrjOgR2WtxPvjbojXqPPh__qYL26mcQ4qvSMXmzRSWNsCCo6DS4ihsrAV3VNKBrUlHQNntdTl7vMXyMOCS1CWPs8_mKVjxvZ1zyrGKTysQwDBHd31YCah-LmmJR-1jUbyyZupgoj4h_RCNZXUvJvgGo_omo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xu, Huiyan</creator><creator>Wang, Zhijian</creator><creator>Weng, Xiaolan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8557-4887</orcidid><orcidid>https://orcid.org/0000-0002-0905-7068</orcidid><orcidid>https://orcid.org/0000-0002-4985-5208</orcidid></search><sort><creationdate>2019</creationdate><title>Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model</title><author>Xu, Huiyan ; Wang, Zhijian ; Weng, Xiaolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-60fe1fe3bd7c3da1d7027352e5f1e5b8cd2650e10b91e5596f89502911bcfbe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>attention mechanism</topic><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>natural document structure</topic><topic>Neural networks</topic><topic>Periodic structures</topic><topic>Semantics</topic><topic>sentence classification</topic><topic>Structural hierarchy</topic><topic>Task analysis</topic><topic>Topic survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Huiyan</creatorcontrib><creatorcontrib>Wang, Zhijian</creatorcontrib><creatorcontrib>Weng, Xiaolan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Huiyan</au><au>Wang, Zhijian</au><au>Weng, Xiaolan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>185290</spage><epage>185300</epage><pages>185290-185300</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Scientific literature summarization aims to summarize related papers into a survey. It can help researchers, especially newcomers, to quickly know the current situation of their professional area from massive literature. Since the structure of documents is very important for scientific literature summarization, and it is obviously observed that there is a relationship and semantic information hidden in document structures of scientific literature, therefore, we employ a hierarchical attention model to learn document structure from all the papers for summarization. In particular, we utilize attention mechanism to capture relations among document structure and learn semantic information on document discourse levels, and judge the importance of each sentence according to its surroundings by the information obtained. Moreover, we automatically construct a scientific literature data set consisting of surveys and their references. We evaluate our proposed model on this dataset with ROUGE metrics, experiments prove that our approach is effective, and our model outperforms several baselines.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960611</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8557-4887</orcidid><orcidid>https://orcid.org/0000-0002-0905-7068</orcidid><orcidid>https://orcid.org/0000-0002-4985-5208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.185290-185300
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455593595
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects attention mechanism
Computational modeling
Feature extraction
Hidden Markov models
natural document structure
Neural networks
Periodic structures
Semantics
sentence classification
Structural hierarchy
Task analysis
Topic survey
title Scientific Literature Summarization Using Document Structure and Hierarchical Attention Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scientific%20Literature%20Summarization%20Using%20Document%20Structure%20and%20Hierarchical%20Attention%20Model&rft.jtitle=IEEE%20access&rft.au=Xu,%20Huiyan&rft.date=2019&rft.volume=7&rft.spage=185290&rft.epage=185300&rft.pages=185290-185300&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960611&rft_dat=%3Cproquest_doaj_%3E2455593595%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455593595&rft_id=info:pmid/&rft_ieee_id=8937799&rft_doaj_id=oai_doaj_org_article_9c6d0626ba0f45cd90ef4880a71420ad&rfr_iscdi=true