Comparison of three approaches for computing measurement uncertainties
This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2020-10, Vol.163, p.107923, Article 107923 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107923 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 163 |
creator | Huang, Hening |
description | This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties. |
doi_str_mv | 10.1016/j.measurement.2020.107923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455555044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120304619</els_id><sourcerecordid>2455555044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</originalsourceid><addsrcrecordid>eNqNUE1LxDAQDaLguvofKp675mOabo5SXBUWvCh4C2l26qbYpiap4L-3pR48OpeB4X3Me4RcM7phlMnbdtOhiWPADvu04ZTP91JxcUJWbFuKHBh_OyUryqXIOQd2Ti5ibCmlUii5IrvKd4MJLvo-802WjgExM8MQvLFHjFnjQ2YnyJhc_5798crG3mJIxvXJYbwkZ435iHj1u9fkdXf_Uj3m--eHp-pun1sBKuVSWrB1o2gpS1CiMY3cQl2gAsGhZqqoaw5bWfICa1qAOQgJhVUguTFGllKsyc2iOz34OWJMuvVj6CdLzaGYhwJMKLWgbPAxBmz0EFxnwrdmVM-16Vb_iaLn2vRS28StFi5OMb4cBh2twynrwQW0SR-8-4fKD9eRfJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455555044</pqid></control><display><type>article</type><title>Comparison of three approaches for computing measurement uncertainties</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Hening</creator><creatorcontrib>Huang, Hening</creatorcontrib><description>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107923</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Bayesian analysis ; Computation ; Confidence intervals ; Error ; GUM ; High performance computing ; Interval ; Measurement ; Probability ; Small samples ; Statistical analysis ; Uncertainty ; Uncertainty analysis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-10, Vol.163, p.107923, Article 107923</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</citedby><cites>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224120304619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Hening</creatorcontrib><title>Comparison of three approaches for computing measurement uncertainties</title><title>Measurement : journal of the International Measurement Confederation</title><description>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</description><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Error</subject><subject>GUM</subject><subject>High performance computing</subject><subject>Interval</subject><subject>Measurement</subject><subject>Probability</subject><subject>Small samples</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQDaLguvofKp675mOabo5SXBUWvCh4C2l26qbYpiap4L-3pR48OpeB4X3Me4RcM7phlMnbdtOhiWPADvu04ZTP91JxcUJWbFuKHBh_OyUryqXIOQd2Ti5ibCmlUii5IrvKd4MJLvo-802WjgExM8MQvLFHjFnjQ2YnyJhc_5798crG3mJIxvXJYbwkZ435iHj1u9fkdXf_Uj3m--eHp-pun1sBKuVSWrB1o2gpS1CiMY3cQl2gAsGhZqqoaw5bWfICa1qAOQgJhVUguTFGllKsyc2iOz34OWJMuvVj6CdLzaGYhwJMKLWgbPAxBmz0EFxnwrdmVM-16Vb_iaLn2vRS28StFi5OMb4cBh2twynrwQW0SR-8-4fKD9eRfJk</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Huang, Hening</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201015</creationdate><title>Comparison of three approaches for computing measurement uncertainties</title><author>Huang, Hening</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Error</topic><topic>GUM</topic><topic>High performance computing</topic><topic>Interval</topic><topic>Measurement</topic><topic>Probability</topic><topic>Small samples</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hening</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hening</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of three approaches for computing measurement uncertainties</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>163</volume><spage>107923</spage><pages>107923-</pages><artnum>107923</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107923</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2020-10, Vol.163, p.107923, Article 107923 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2455555044 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian analysis Computation Confidence intervals Error GUM High performance computing Interval Measurement Probability Small samples Statistical analysis Uncertainty Uncertainty analysis |
title | Comparison of three approaches for computing measurement uncertainties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20three%20approaches%20for%20computing%20measurement%20uncertainties&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Huang,%20Hening&rft.date=2020-10-15&rft.volume=163&rft.spage=107923&rft.pages=107923-&rft.artnum=107923&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107923&rft_dat=%3Cproquest_cross%3E2455555044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455555044&rft_id=info:pmid/&rft_els_id=S0263224120304619&rfr_iscdi=true |