Comparison of three approaches for computing measurement uncertainties

This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2020-10, Vol.163, p.107923, Article 107923
1. Verfasser: Huang, Hening
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107923
container_title Measurement : journal of the International Measurement Confederation
container_volume 163
creator Huang, Hening
description This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.
doi_str_mv 10.1016/j.measurement.2020.107923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455555044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120304619</els_id><sourcerecordid>2455555044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</originalsourceid><addsrcrecordid>eNqNUE1LxDAQDaLguvofKp675mOabo5SXBUWvCh4C2l26qbYpiap4L-3pR48OpeB4X3Me4RcM7phlMnbdtOhiWPADvu04ZTP91JxcUJWbFuKHBh_OyUryqXIOQd2Ti5ibCmlUii5IrvKd4MJLvo-802WjgExM8MQvLFHjFnjQ2YnyJhc_5798crG3mJIxvXJYbwkZ435iHj1u9fkdXf_Uj3m--eHp-pun1sBKuVSWrB1o2gpS1CiMY3cQl2gAsGhZqqoaw5bWfICa1qAOQgJhVUguTFGllKsyc2iOz34OWJMuvVj6CdLzaGYhwJMKLWgbPAxBmz0EFxnwrdmVM-16Vb_iaLn2vRS28StFi5OMb4cBh2twynrwQW0SR-8-4fKD9eRfJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455555044</pqid></control><display><type>article</type><title>Comparison of three approaches for computing measurement uncertainties</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Hening</creator><creatorcontrib>Huang, Hening</creatorcontrib><description>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107923</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Bayesian analysis ; Computation ; Confidence intervals ; Error ; GUM ; High performance computing ; Interval ; Measurement ; Probability ; Small samples ; Statistical analysis ; Uncertainty ; Uncertainty analysis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-10, Vol.163, p.107923, Article 107923</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</citedby><cites>FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224120304619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Hening</creatorcontrib><title>Comparison of three approaches for computing measurement uncertainties</title><title>Measurement : journal of the International Measurement Confederation</title><description>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</description><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Error</subject><subject>GUM</subject><subject>High performance computing</subject><subject>Interval</subject><subject>Measurement</subject><subject>Probability</subject><subject>Small samples</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQDaLguvofKp675mOabo5SXBUWvCh4C2l26qbYpiap4L-3pR48OpeB4X3Me4RcM7phlMnbdtOhiWPADvu04ZTP91JxcUJWbFuKHBh_OyUryqXIOQd2Ti5ibCmlUii5IrvKd4MJLvo-802WjgExM8MQvLFHjFnjQ2YnyJhc_5798crG3mJIxvXJYbwkZ435iHj1u9fkdXf_Uj3m--eHp-pun1sBKuVSWrB1o2gpS1CiMY3cQl2gAsGhZqqoaw5bWfICa1qAOQgJhVUguTFGllKsyc2iOz34OWJMuvVj6CdLzaGYhwJMKLWgbPAxBmz0EFxnwrdmVM-16Vb_iaLn2vRS28StFi5OMb4cBh2twynrwQW0SR-8-4fKD9eRfJk</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Huang, Hening</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201015</creationdate><title>Comparison of three approaches for computing measurement uncertainties</title><author>Huang, Hening</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-66c4cbf90767493faf684b5e94324b195bb2486725eb054ad3645c9462aaa6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Error</topic><topic>GUM</topic><topic>High performance computing</topic><topic>Interval</topic><topic>Measurement</topic><topic>Probability</topic><topic>Small samples</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hening</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hening</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of three approaches for computing measurement uncertainties</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>163</volume><spage>107923</spage><pages>107923-</pages><artnum>107923</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>This paper compares three approaches for computing measurement uncertainties: GUM’s confidence interval (CI) based approach, Bayesian approach, and probability interval (PI) based approach in a recently proposed unified theory of measurement errors and uncertainties. The key concepts underlying the three approaches are discussed. The similarities of and differences between the three approaches are explored. We focus on a simple problem that is often encountered in practice: Type A and Type B evaluation of uncertainty with a small number of observations. The logical frameworks of the three approaches for the problem considered are discussed. Some misinterpretations of and confusion about several statistical concepts involved in uncertainty analysis are clarified. We conclude that the PI-based approach is superior to both the GUM’s CI-based approach and Bayesian approach. The revision of the GUM should adopt the PI-based approach for computing measurement uncertainties.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107923</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2020-10, Vol.163, p.107923, Article 107923
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2455555044
source Elsevier ScienceDirect Journals
subjects Bayesian analysis
Computation
Confidence intervals
Error
GUM
High performance computing
Interval
Measurement
Probability
Small samples
Statistical analysis
Uncertainty
Uncertainty analysis
title Comparison of three approaches for computing measurement uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20three%20approaches%20for%20computing%20measurement%20uncertainties&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Huang,%20Hening&rft.date=2020-10-15&rft.volume=163&rft.spage=107923&rft.pages=107923-&rft.artnum=107923&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107923&rft_dat=%3Cproquest_cross%3E2455555044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455555044&rft_id=info:pmid/&rft_els_id=S0263224120304619&rfr_iscdi=true