Variational Autoencoder with Optimizing Gaussian Mixture Model Priors

The latent variable prior of the variational autoencoder (VAE) often utilizes a standard Gaussian distribution because of the convenience in calculation, but has an underfitting problem. This paper proposes a variational autoencoder with optimizing Gaussian mixture model priors. This method utilizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Guo, Chunsheng, Zhou, Jialuo, Chen, Huahua, Ying, Na, Zhang, Jianwu, Zhou, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Guo, Chunsheng
Zhou, Jialuo
Chen, Huahua
Ying, Na
Zhang, Jianwu
Zhou, Di
description The latent variable prior of the variational autoencoder (VAE) often utilizes a standard Gaussian distribution because of the convenience in calculation, but has an underfitting problem. This paper proposes a variational autoencoder with optimizing Gaussian mixture model priors. This method utilizes a Gaussian mixture model to construct prior distribution, and utilizes the Kullback-Leibler (KL) distance between posterior and prior distribution to implement an iterative optimization of the prior distribution based on the data. The greedy algorithm is used to solve the KL distance for defining the approximate variational lower bound solution of the loss function, and for realizing the VAE with optimizing Gaussian mixture model priors. Compared with the standard VAE method, the proposed method obtains state-of-the-art results on MNIST, Omniglot, and Frey Face datasets, which shows that the VAE with optimizing Gaussian mixture model priors can learn a better model.
doi_str_mv 10.1109/ACCESS.2020.2977671
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454927198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9020116</ieee_id><doaj_id>oai_doaj_org_article_d75fd160e9c94db4af37bcd6a0b50ce4</doaj_id><sourcerecordid>2454927198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7fa8a068601aef4a2669217dc25d71095ba3a7ee6fed700fdc11a73279ae3f1d3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhRdRULS_wJcFn1tz2U02j6XUWmhR8PIapslEU2pTk128_HpTV4rzMsNwzhnmK4pLSkaUEnU9nkymDw8jRhgZMSWlkPSoOGNUqCGvuTj-N58Wg5TWJFeTV7U8K6bPED20PmxhU467NuDWBIux_PDta3m3a_2b__bbl3IGXUoetuXSf7ZdxHKZZZvyPvoQ00Vx4mCTcPDXz4unm-nj5Ha4uJvNJ-PF0FR10w6lgwaIaAShgK4CJoRiVFrDaivzK_UKOEhE4dBKQpw1lILkTCpA7qjl58W8z7UB1noX_RvELx3A699FiC8aYuvNBrWVtbNUEFRGVXZVgeNyZawAsqqJwSpnXfVZuxjeO0ytXocuZgxJs6quFJNUNVnFe5WJIaWI7nCVEr3Hr3v8eo9f_-HPrsve5RHx4FBZQqngPzHAgWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454927198</pqid></control><display><type>article</type><title>Variational Autoencoder with Optimizing Gaussian Mixture Model Priors</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Guo, Chunsheng ; Zhou, Jialuo ; Chen, Huahua ; Ying, Na ; Zhang, Jianwu ; Zhou, Di</creator><creatorcontrib>Guo, Chunsheng ; Zhou, Jialuo ; Chen, Huahua ; Ying, Na ; Zhang, Jianwu ; Zhou, Di</creatorcontrib><description>The latent variable prior of the variational autoencoder (VAE) often utilizes a standard Gaussian distribution because of the convenience in calculation, but has an underfitting problem. This paper proposes a variational autoencoder with optimizing Gaussian mixture model priors. This method utilizes a Gaussian mixture model to construct prior distribution, and utilizes the Kullback-Leibler (KL) distance between posterior and prior distribution to implement an iterative optimization of the prior distribution based on the data. The greedy algorithm is used to solve the KL distance for defining the approximate variational lower bound solution of the loss function, and for realizing the VAE with optimizing Gaussian mixture model priors. Compared with the standard VAE method, the proposed method obtains state-of-the-art results on MNIST, Omniglot, and Frey Face datasets, which shows that the VAE with optimizing Gaussian mixture model priors can learn a better model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2977671</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregates ; Gaussian distribution ; Gaussian mixture model ; Greedy algorithms ; Iterative methods ; Kullback-Leibler distance ; Lower bounds ; Mathematical analysis ; Neural networks ; Normal distribution ; Optimization ; Probabilistic models ; Training ; Variational autoencoder</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7fa8a068601aef4a2669217dc25d71095ba3a7ee6fed700fdc11a73279ae3f1d3</citedby><cites>FETCH-LOGICAL-c458t-7fa8a068601aef4a2669217dc25d71095ba3a7ee6fed700fdc11a73279ae3f1d3</cites><orcidid>0000-0003-1631-551X ; 0000-0003-1765-3705 ; 0000-0002-4551-2830 ; 0000-0003-1633-3507 ; 0000-0001-8512-0412 ; 0000-0001-8288-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9020116$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Zhou, Jialuo</creatorcontrib><creatorcontrib>Chen, Huahua</creatorcontrib><creatorcontrib>Ying, Na</creatorcontrib><creatorcontrib>Zhang, Jianwu</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><title>Variational Autoencoder with Optimizing Gaussian Mixture Model Priors</title><title>IEEE access</title><addtitle>Access</addtitle><description>The latent variable prior of the variational autoencoder (VAE) often utilizes a standard Gaussian distribution because of the convenience in calculation, but has an underfitting problem. This paper proposes a variational autoencoder with optimizing Gaussian mixture model priors. This method utilizes a Gaussian mixture model to construct prior distribution, and utilizes the Kullback-Leibler (KL) distance between posterior and prior distribution to implement an iterative optimization of the prior distribution based on the data. The greedy algorithm is used to solve the KL distance for defining the approximate variational lower bound solution of the loss function, and for realizing the VAE with optimizing Gaussian mixture model priors. Compared with the standard VAE method, the proposed method obtains state-of-the-art results on MNIST, Omniglot, and Frey Face datasets, which shows that the VAE with optimizing Gaussian mixture model priors can learn a better model.</description><subject>Aggregates</subject><subject>Gaussian distribution</subject><subject>Gaussian mixture model</subject><subject>Greedy algorithms</subject><subject>Iterative methods</subject><subject>Kullback-Leibler distance</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Training</subject><subject>Variational autoencoder</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhRdRULS_wJcFn1tz2U02j6XUWmhR8PIapslEU2pTk128_HpTV4rzMsNwzhnmK4pLSkaUEnU9nkymDw8jRhgZMSWlkPSoOGNUqCGvuTj-N58Wg5TWJFeTV7U8K6bPED20PmxhU467NuDWBIux_PDta3m3a_2b__bbl3IGXUoetuXSf7ZdxHKZZZvyPvoQ00Vx4mCTcPDXz4unm-nj5Ha4uJvNJ-PF0FR10w6lgwaIaAShgK4CJoRiVFrDaivzK_UKOEhE4dBKQpw1lILkTCpA7qjl58W8z7UB1noX_RvELx3A699FiC8aYuvNBrWVtbNUEFRGVXZVgeNyZawAsqqJwSpnXfVZuxjeO0ytXocuZgxJs6quFJNUNVnFe5WJIaWI7nCVEr3Hr3v8eo9f_-HPrsve5RHx4FBZQqngPzHAgWA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guo, Chunsheng</creator><creator>Zhou, Jialuo</creator><creator>Chen, Huahua</creator><creator>Ying, Na</creator><creator>Zhang, Jianwu</creator><creator>Zhou, Di</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1631-551X</orcidid><orcidid>https://orcid.org/0000-0003-1765-3705</orcidid><orcidid>https://orcid.org/0000-0002-4551-2830</orcidid><orcidid>https://orcid.org/0000-0003-1633-3507</orcidid><orcidid>https://orcid.org/0000-0001-8512-0412</orcidid><orcidid>https://orcid.org/0000-0001-8288-8688</orcidid></search><sort><creationdate>20200101</creationdate><title>Variational Autoencoder with Optimizing Gaussian Mixture Model Priors</title><author>Guo, Chunsheng ; Zhou, Jialuo ; Chen, Huahua ; Ying, Na ; Zhang, Jianwu ; Zhou, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7fa8a068601aef4a2669217dc25d71095ba3a7ee6fed700fdc11a73279ae3f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Gaussian distribution</topic><topic>Gaussian mixture model</topic><topic>Greedy algorithms</topic><topic>Iterative methods</topic><topic>Kullback-Leibler distance</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Training</topic><topic>Variational autoencoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Zhou, Jialuo</creatorcontrib><creatorcontrib>Chen, Huahua</creatorcontrib><creatorcontrib>Ying, Na</creatorcontrib><creatorcontrib>Zhang, Jianwu</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chunsheng</au><au>Zhou, Jialuo</au><au>Chen, Huahua</au><au>Ying, Na</au><au>Zhang, Jianwu</au><au>Zhou, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Autoencoder with Optimizing Gaussian Mixture Model Priors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The latent variable prior of the variational autoencoder (VAE) often utilizes a standard Gaussian distribution because of the convenience in calculation, but has an underfitting problem. This paper proposes a variational autoencoder with optimizing Gaussian mixture model priors. This method utilizes a Gaussian mixture model to construct prior distribution, and utilizes the Kullback-Leibler (KL) distance between posterior and prior distribution to implement an iterative optimization of the prior distribution based on the data. The greedy algorithm is used to solve the KL distance for defining the approximate variational lower bound solution of the loss function, and for realizing the VAE with optimizing Gaussian mixture model priors. Compared with the standard VAE method, the proposed method obtains state-of-the-art results on MNIST, Omniglot, and Frey Face datasets, which shows that the VAE with optimizing Gaussian mixture model priors can learn a better model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2977671</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1631-551X</orcidid><orcidid>https://orcid.org/0000-0003-1765-3705</orcidid><orcidid>https://orcid.org/0000-0002-4551-2830</orcidid><orcidid>https://orcid.org/0000-0003-1633-3507</orcidid><orcidid>https://orcid.org/0000-0001-8512-0412</orcidid><orcidid>https://orcid.org/0000-0001-8288-8688</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454927198
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Aggregates
Gaussian distribution
Gaussian mixture model
Greedy algorithms
Iterative methods
Kullback-Leibler distance
Lower bounds
Mathematical analysis
Neural networks
Normal distribution
Optimization
Probabilistic models
Training
Variational autoencoder
title Variational Autoencoder with Optimizing Gaussian Mixture Model Priors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Autoencoder%20with%20Optimizing%20Gaussian%20Mixture%20Model%20Priors&rft.jtitle=IEEE%20access&rft.au=Guo,%20Chunsheng&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2977671&rft_dat=%3Cproquest_cross%3E2454927198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454927198&rft_id=info:pmid/&rft_ieee_id=9020116&rft_doaj_id=oai_doaj_org_article_d75fd160e9c94db4af37bcd6a0b50ce4&rfr_iscdi=true