Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals
Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.37495-37504 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37504 |
---|---|
container_issue | |
container_start_page | 37495 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Yuan Huang, Yu-Xuan Zhang, Xuexi Qi, Wen Guo, Jing Hu, Yingbai Zhang, Longbin Su, Hang |
description | Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%. |
doi_str_mv | 10.1109/ACCESS.2020.2976156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454793581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9007764</ieee_id><doaj_id>oai_doaj_org_article_f50b9aebcbc04de98f05b80c4006bc21</doaj_id><sourcerecordid>2454793581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</originalsourceid><addsrcrecordid>eNpVkc1O3DAUhaOqSCDgCdhY6jpT_ydejjIpIE1hkYGtZTs3g4eZOHUSofbpmxCEWm-Ode65n3R1kuSG4BUhWH1fF0VZVSuKKV5RlUki5JfkghKpUiaY_PrP_zy57vsDnl4-WSK7SGAD0KEi3Va7n-gBxmiOkwxvIb6iJkRUdv4I3eAdqsD_GSMg09ZoN56m2QYGcIMPLXrqfbtHd37_km78Cdp-NsvyFlV-35pjf5WcNZPA9YdeJk8_yl1xl24fb--L9TZ1nMshzSjhkKuGY2NqllNVcwzGEQWWYGOllDXLbG6MISzL6kYKa4UwUAswuHGcXSb3C7cO5qC76E8m_tbBeP1uhLjXJk7HHEE3AltlwDrrMK9B5Q0WNseOYyyto2RipQurf4NutP_RNv55_U57HV40I0xROeW_Lfkuhl8j9IM-hDHO12vKBc8UE_lMZUvKxdD3EZpPLsF6rlMvdeq5Tv1R57R1s2x5APjcUBhnmeTsL4fEm2U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454793581</pqid></control><display><type>article</type><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</creator><creatorcontrib>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</creatorcontrib><description>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2976156</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; Brain ; Brain modeling ; C-LSTM ; Classification ; Convulsions & seizures ; Deep learning ; Electroencephalography ; Epilepsy ; epileptic seizure ; Feature extraction ; high-dimension electroencephalogram (EEG) ; Machine learning ; Neural networks ; Seizures ; Tumors</subject><ispartof>IEEE access, 2020, Vol.8, p.37495-37504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</citedby><cites>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</cites><orcidid>0000-0002-0053-2678 ; 0000-0002-2091-3718 ; 0000-0003-2452-3570 ; 0000-0001-8785-5885 ; 0000-0001-5223-6216 ; 0000-0001-5963-3839 ; 0000-0002-7289-2103 ; 0000-0002-6877-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9007764$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-313926$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Huang, Yu-Xuan</creatorcontrib><creatorcontrib>Zhang, Xuexi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</description><subject>Biological neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>C-LSTM</subject><subject>Classification</subject><subject>Convulsions & seizures</subject><subject>Deep learning</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>epileptic seizure</subject><subject>Feature extraction</subject><subject>high-dimension electroencephalogram (EEG)</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Seizures</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1O3DAUhaOqSCDgCdhY6jpT_ydejjIpIE1hkYGtZTs3g4eZOHUSofbpmxCEWm-Ode65n3R1kuSG4BUhWH1fF0VZVSuKKV5RlUki5JfkghKpUiaY_PrP_zy57vsDnl4-WSK7SGAD0KEi3Va7n-gBxmiOkwxvIb6iJkRUdv4I3eAdqsD_GSMg09ZoN56m2QYGcIMPLXrqfbtHd37_km78Cdp-NsvyFlV-35pjf5WcNZPA9YdeJk8_yl1xl24fb--L9TZ1nMshzSjhkKuGY2NqllNVcwzGEQWWYGOllDXLbG6MISzL6kYKa4UwUAswuHGcXSb3C7cO5qC76E8m_tbBeP1uhLjXJk7HHEE3AltlwDrrMK9B5Q0WNseOYyyto2RipQurf4NutP_RNv55_U57HV40I0xROeW_Lfkuhl8j9IM-hDHO12vKBc8UE_lMZUvKxdD3EZpPLsF6rlMvdeq5Tv1R57R1s2x5APjcUBhnmeTsL4fEm2U</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yuan</creator><creator>Huang, Yu-Xuan</creator><creator>Zhang, Xuexi</creator><creator>Qi, Wen</creator><creator>Guo, Jing</creator><creator>Hu, Yingbai</creator><creator>Zhang, Longbin</creator><creator>Su, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0053-2678</orcidid><orcidid>https://orcid.org/0000-0002-2091-3718</orcidid><orcidid>https://orcid.org/0000-0003-2452-3570</orcidid><orcidid>https://orcid.org/0000-0001-8785-5885</orcidid><orcidid>https://orcid.org/0000-0001-5223-6216</orcidid><orcidid>https://orcid.org/0000-0001-5963-3839</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-6877-6783</orcidid></search><sort><creationdate>2020</creationdate><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><author>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>C-LSTM</topic><topic>Classification</topic><topic>Convulsions & seizures</topic><topic>Deep learning</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>epileptic seizure</topic><topic>Feature extraction</topic><topic>high-dimension electroencephalogram (EEG)</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Seizures</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Huang, Yu-Xuan</creatorcontrib><creatorcontrib>Zhang, Xuexi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan</au><au>Huang, Yu-Xuan</au><au>Zhang, Xuexi</au><au>Qi, Wen</au><au>Guo, Jing</au><au>Hu, Yingbai</au><au>Zhang, Longbin</au><au>Su, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>37495</spage><epage>37504</epage><pages>37495-37504</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2976156</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0053-2678</orcidid><orcidid>https://orcid.org/0000-0002-2091-3718</orcidid><orcidid>https://orcid.org/0000-0003-2452-3570</orcidid><orcidid>https://orcid.org/0000-0001-8785-5885</orcidid><orcidid>https://orcid.org/0000-0001-5223-6216</orcidid><orcidid>https://orcid.org/0000-0001-5963-3839</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-6877-6783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.37495-37504 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454793581 |
source | Open Access: DOAJ - Directory of Open Access Journals; SWEPUB Freely available online; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Biological neural networks Brain Brain modeling C-LSTM Classification Convulsions & seizures Deep learning Electroencephalography Epilepsy epileptic seizure Feature extraction high-dimension electroencephalogram (EEG) Machine learning Neural networks Seizures Tumors |
title | Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20C-LSTM%20Neural%20Network%20for%20Epileptic%20Seizure%20and%20Tumor%20Detection%20Using%20High-Dimension%20EEG%20Signals&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yuan&rft.date=2020&rft.volume=8&rft.spage=37495&rft.epage=37504&rft.pages=37495-37504&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2976156&rft_dat=%3Cproquest_ieee_%3E2454793581%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454793581&rft_id=info:pmid/&rft_ieee_id=9007764&rft_doaj_id=oai_doaj_org_article_f50b9aebcbc04de98f05b80c4006bc21&rfr_iscdi=true |