Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals

Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.37495-37504
Hauptverfasser: Liu, Yuan, Huang, Yu-Xuan, Zhang, Xuexi, Qi, Wen, Guo, Jing, Hu, Yingbai, Zhang, Longbin, Su, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37504
container_issue
container_start_page 37495
container_title IEEE access
container_volume 8
creator Liu, Yuan
Huang, Yu-Xuan
Zhang, Xuexi
Qi, Wen
Guo, Jing
Hu, Yingbai
Zhang, Longbin
Su, Hang
description Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.
doi_str_mv 10.1109/ACCESS.2020.2976156
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454793581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9007764</ieee_id><doaj_id>oai_doaj_org_article_f50b9aebcbc04de98f05b80c4006bc21</doaj_id><sourcerecordid>2454793581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</originalsourceid><addsrcrecordid>eNpVkc1O3DAUhaOqSCDgCdhY6jpT_ydejjIpIE1hkYGtZTs3g4eZOHUSofbpmxCEWm-Ode65n3R1kuSG4BUhWH1fF0VZVSuKKV5RlUki5JfkghKpUiaY_PrP_zy57vsDnl4-WSK7SGAD0KEi3Va7n-gBxmiOkwxvIb6iJkRUdv4I3eAdqsD_GSMg09ZoN56m2QYGcIMPLXrqfbtHd37_km78Cdp-NsvyFlV-35pjf5WcNZPA9YdeJk8_yl1xl24fb--L9TZ1nMshzSjhkKuGY2NqllNVcwzGEQWWYGOllDXLbG6MISzL6kYKa4UwUAswuHGcXSb3C7cO5qC76E8m_tbBeP1uhLjXJk7HHEE3AltlwDrrMK9B5Q0WNseOYyyto2RipQurf4NutP_RNv55_U57HV40I0xROeW_Lfkuhl8j9IM-hDHO12vKBc8UE_lMZUvKxdD3EZpPLsF6rlMvdeq5Tv1R57R1s2x5APjcUBhnmeTsL4fEm2U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454793581</pqid></control><display><type>article</type><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</creator><creatorcontrib>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</creatorcontrib><description>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2976156</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; Brain ; Brain modeling ; C-LSTM ; Classification ; Convulsions &amp; seizures ; Deep learning ; Electroencephalography ; Epilepsy ; epileptic seizure ; Feature extraction ; high-dimension electroencephalogram (EEG) ; Machine learning ; Neural networks ; Seizures ; Tumors</subject><ispartof>IEEE access, 2020, Vol.8, p.37495-37504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</citedby><cites>FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</cites><orcidid>0000-0002-0053-2678 ; 0000-0002-2091-3718 ; 0000-0003-2452-3570 ; 0000-0001-8785-5885 ; 0000-0001-5223-6216 ; 0000-0001-5963-3839 ; 0000-0002-7289-2103 ; 0000-0002-6877-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9007764$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-313926$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Huang, Yu-Xuan</creatorcontrib><creatorcontrib>Zhang, Xuexi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</description><subject>Biological neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>C-LSTM</subject><subject>Classification</subject><subject>Convulsions &amp; seizures</subject><subject>Deep learning</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>epileptic seizure</subject><subject>Feature extraction</subject><subject>high-dimension electroencephalogram (EEG)</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Seizures</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1O3DAUhaOqSCDgCdhY6jpT_ydejjIpIE1hkYGtZTs3g4eZOHUSofbpmxCEWm-Ode65n3R1kuSG4BUhWH1fF0VZVSuKKV5RlUki5JfkghKpUiaY_PrP_zy57vsDnl4-WSK7SGAD0KEi3Va7n-gBxmiOkwxvIb6iJkRUdv4I3eAdqsD_GSMg09ZoN56m2QYGcIMPLXrqfbtHd37_km78Cdp-NsvyFlV-35pjf5WcNZPA9YdeJk8_yl1xl24fb--L9TZ1nMshzSjhkKuGY2NqllNVcwzGEQWWYGOllDXLbG6MISzL6kYKa4UwUAswuHGcXSb3C7cO5qC76E8m_tbBeP1uhLjXJk7HHEE3AltlwDrrMK9B5Q0WNseOYyyto2RipQurf4NutP_RNv55_U57HV40I0xROeW_Lfkuhl8j9IM-hDHO12vKBc8UE_lMZUvKxdD3EZpPLsF6rlMvdeq5Tv1R57R1s2x5APjcUBhnmeTsL4fEm2U</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yuan</creator><creator>Huang, Yu-Xuan</creator><creator>Zhang, Xuexi</creator><creator>Qi, Wen</creator><creator>Guo, Jing</creator><creator>Hu, Yingbai</creator><creator>Zhang, Longbin</creator><creator>Su, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0053-2678</orcidid><orcidid>https://orcid.org/0000-0002-2091-3718</orcidid><orcidid>https://orcid.org/0000-0003-2452-3570</orcidid><orcidid>https://orcid.org/0000-0001-8785-5885</orcidid><orcidid>https://orcid.org/0000-0001-5223-6216</orcidid><orcidid>https://orcid.org/0000-0001-5963-3839</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-6877-6783</orcidid></search><sort><creationdate>2020</creationdate><title>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</title><author>Liu, Yuan ; Huang, Yu-Xuan ; Zhang, Xuexi ; Qi, Wen ; Guo, Jing ; Hu, Yingbai ; Zhang, Longbin ; Su, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-7214e89f40aad3829d40eac19eb10ab666d37b8aaa1377df65bb55aed5ea0fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>C-LSTM</topic><topic>Classification</topic><topic>Convulsions &amp; seizures</topic><topic>Deep learning</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>epileptic seizure</topic><topic>Feature extraction</topic><topic>high-dimension electroencephalogram (EEG)</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Seizures</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Huang, Yu-Xuan</creatorcontrib><creatorcontrib>Zhang, Xuexi</creatorcontrib><creatorcontrib>Qi, Wen</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hu, Yingbai</creatorcontrib><creatorcontrib>Zhang, Longbin</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan</au><au>Huang, Yu-Xuan</au><au>Zhang, Xuexi</au><au>Qi, Wen</au><au>Guo, Jing</au><au>Hu, Yingbai</au><au>Zhang, Longbin</au><au>Su, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>37495</spage><epage>37504</epage><pages>37495-37504</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning (ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually. Although the effectiveness of these contributions have already been proved, they cannot achieve multiple class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a short detection duration (one second). By comparing with other two types deep learning approaches (DCNN and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All of the obtained total accuracy are over 98.80%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2976156</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0053-2678</orcidid><orcidid>https://orcid.org/0000-0002-2091-3718</orcidid><orcidid>https://orcid.org/0000-0003-2452-3570</orcidid><orcidid>https://orcid.org/0000-0001-8785-5885</orcidid><orcidid>https://orcid.org/0000-0001-5223-6216</orcidid><orcidid>https://orcid.org/0000-0001-5963-3839</orcidid><orcidid>https://orcid.org/0000-0002-7289-2103</orcidid><orcidid>https://orcid.org/0000-0002-6877-6783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.37495-37504
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454793581
source Open Access: DOAJ - Directory of Open Access Journals; SWEPUB Freely available online; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Biological neural networks
Brain
Brain modeling
C-LSTM
Classification
Convulsions & seizures
Deep learning
Electroencephalography
Epilepsy
epileptic seizure
Feature extraction
high-dimension electroencephalogram (EEG)
Machine learning
Neural networks
Seizures
Tumors
title Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20C-LSTM%20Neural%20Network%20for%20Epileptic%20Seizure%20and%20Tumor%20Detection%20Using%20High-Dimension%20EEG%20Signals&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yuan&rft.date=2020&rft.volume=8&rft.spage=37495&rft.epage=37504&rft.pages=37495-37504&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2976156&rft_dat=%3Cproquest_ieee_%3E2454793581%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454793581&rft_id=info:pmid/&rft_ieee_id=9007764&rft_doaj_id=oai_doaj_org_article_f50b9aebcbc04de98f05b80c4006bc21&rfr_iscdi=true