Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms

With the wide deployment of advancing metering infrastructure (AMI) in power distribution systems, the quantity of power consumers' electricity data is increasing rapidly and the data also become more and more accurate. To make full use of these power consumers' AMI data, a data-driven abn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.27139-27151
Hauptverfasser: Zhang, Bo, Liu, Shengyuan, Dong, Hanyu, Zheng, Songsong, Zhao, Ling, Zhu, Ruiqian, Zhao, Limei, Lin, Zhenzhi, Yang, Li, Wang, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27151
container_issue
container_start_page 27139
container_title IEEE access
container_volume 8
creator Zhang, Bo
Liu, Shengyuan
Dong, Hanyu
Zheng, Songsong
Zhao, Ling
Zhu, Ruiqian
Zhao, Limei
Lin, Zhenzhi
Yang, Li
Wang, Qin
description With the wide deployment of advancing metering infrastructure (AMI) in power distribution systems, the quantity of power consumers' electricity data is increasing rapidly and the data also become more and more accurate. To make full use of these power consumers' AMI data, a data-driven abnormity assessment algorithm for low-voltage power consumers is proposed based on the CRITIC (CRiteria Importance Though Intercrieria Correlation) method and the improved radar chart method. First, the indexes that characterize the consumer's abnormal features of power consumption and supplies are extracted from the original AMI data. Then, the abnormity assessment algorithm is used to determine power consumers' abnormal features of power consumption and supplies by using the extracted indexes, in which the weights of indexes are determined by the CRITIC method and the assessment value of abnormal features is determined by the improved radar chart method. Next, the abnormity assessment algorithm is used again to assess power consumers' power consumption and supplies abnormities. Finally, the effectiveness of proposed algorithm is demonstrated in case studies by employing AMI data collected from power utilities in Zhejiang Province, China, and the results show that the algorithm can be used in actual applications.
doi_str_mv 10.1109/ACCESS.2020.2970098
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454775145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8972360</ieee_id><doaj_id>oai_doaj_org_article_916c15d582184a3ca2daf159861150a8</doaj_id><sourcerecordid>2454775145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f3a0233abf4eb18576342495267d3154e6f3478768e31ab3fe7a316a9c94add13</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz97q--PoOmlqWGjJpr2KWVveaLEtV_Im5Nw_XiUOoXOZ4c28NzO8orgkeEMINl-qur7e7TYUU7yhRmFs9LvijBJpSiaYfP9f_bG4SOmIc-gMCXVW_L2CBcqr6B_chKr9FOLolydUpeRSGt20oD5EtA2P5e8wLHBw6Gd4dBHVYUqncV58mBBMHdqd5nnwLqGvkFyHMlrfNndN_dJsxjmGhwzfQgeZew9xQdVwCNEv92P6VHzoYUju4jWfF7--Xd_V38vtj5umrrZly4Veyp4BpozBvuduT7RQknHKjaBSdYwI7mTPuNJKascI7FnvFDAiwbSGQ9cRdl40q24X4Gjn6EeITzaAty9AiAebD_Pt4KwhsiWiE5oSzYG1QDvoiTBaEiIw6Kz1edXKn_05ubTYYzjFKZ9vKRdcKUG4yFNsnWpjSCm6_m0rwfbZPLuaZ5_Ns6_mZdblyvLOuTeGNooyidk_-kOUmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454775145</pqid></control><display><type>article</type><title>Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Bo ; Liu, Shengyuan ; Dong, Hanyu ; Zheng, Songsong ; Zhao, Ling ; Zhu, Ruiqian ; Zhao, Limei ; Lin, Zhenzhi ; Yang, Li ; Wang, Qin</creator><creatorcontrib>Zhang, Bo ; Liu, Shengyuan ; Dong, Hanyu ; Zheng, Songsong ; Zhao, Ling ; Zhu, Ruiqian ; Zhao, Limei ; Lin, Zhenzhi ; Yang, Li ; Wang, Qin</creatorcontrib><description>With the wide deployment of advancing metering infrastructure (AMI) in power distribution systems, the quantity of power consumers' electricity data is increasing rapidly and the data also become more and more accurate. To make full use of these power consumers' AMI data, a data-driven abnormity assessment algorithm for low-voltage power consumers is proposed based on the CRITIC (CRiteria Importance Though Intercrieria Correlation) method and the improved radar chart method. First, the indexes that characterize the consumer's abnormal features of power consumption and supplies are extracted from the original AMI data. Then, the abnormity assessment algorithm is used to determine power consumers' abnormal features of power consumption and supplies by using the extracted indexes, in which the weights of indexes are determined by the CRITIC method and the assessment value of abnormal features is determined by the improved radar chart method. Next, the abnormity assessment algorithm is used again to assess power consumers' power consumption and supplies abnormities. Finally, the effectiveness of proposed algorithm is demonstrated in case studies by employing AMI data collected from power utilities in Zhejiang Province, China, and the results show that the algorithm can be used in actual applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2970098</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abnormal feature of power consumption and supplies ; abnormity assessment ; Algorithms ; Consumers ; Consumption ; CRITIC method ; Electric potential ; Electric power distribution ; Electric utilities ; Electricity consumption ; Feature extraction ; improved radar chart method ; Indexes ; Power consumption ; Power consumption and supplies data ; Power demand ; Radar ; Risk management ; Voltage</subject><ispartof>IEEE access, 2020, Vol.8, p.27139-27151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f3a0233abf4eb18576342495267d3154e6f3478768e31ab3fe7a316a9c94add13</citedby><cites>FETCH-LOGICAL-c458t-f3a0233abf4eb18576342495267d3154e6f3478768e31ab3fe7a316a9c94add13</cites><orcidid>0000-0003-1017-500X ; 0000-0001-8976-8224 ; 0000-0001-9722-135X ; 0000-0003-2125-9604 ; 0000-0001-6585-2755 ; 0000-0002-6781-9657 ; 0000-0003-1804-9825 ; 0000-0002-8197-8814 ; 0000-0001-5108-0344 ; 0000-0002-3493-1802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8972360$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Liu, Shengyuan</creatorcontrib><creatorcontrib>Dong, Hanyu</creatorcontrib><creatorcontrib>Zheng, Songsong</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Zhu, Ruiqian</creatorcontrib><creatorcontrib>Zhao, Limei</creatorcontrib><creatorcontrib>Lin, Zhenzhi</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><title>Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the wide deployment of advancing metering infrastructure (AMI) in power distribution systems, the quantity of power consumers' electricity data is increasing rapidly and the data also become more and more accurate. To make full use of these power consumers' AMI data, a data-driven abnormity assessment algorithm for low-voltage power consumers is proposed based on the CRITIC (CRiteria Importance Though Intercrieria Correlation) method and the improved radar chart method. First, the indexes that characterize the consumer's abnormal features of power consumption and supplies are extracted from the original AMI data. Then, the abnormity assessment algorithm is used to determine power consumers' abnormal features of power consumption and supplies by using the extracted indexes, in which the weights of indexes are determined by the CRITIC method and the assessment value of abnormal features is determined by the improved radar chart method. Next, the abnormity assessment algorithm is used again to assess power consumers' power consumption and supplies abnormities. Finally, the effectiveness of proposed algorithm is demonstrated in case studies by employing AMI data collected from power utilities in Zhejiang Province, China, and the results show that the algorithm can be used in actual applications.</description><subject>abnormal feature of power consumption and supplies</subject><subject>abnormity assessment</subject><subject>Algorithms</subject><subject>Consumers</subject><subject>Consumption</subject><subject>CRITIC method</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Electric utilities</subject><subject>Electricity consumption</subject><subject>Feature extraction</subject><subject>improved radar chart method</subject><subject>Indexes</subject><subject>Power consumption</subject><subject>Power consumption and supplies data</subject><subject>Power demand</subject><subject>Radar</subject><subject>Risk management</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz97q--PoOmlqWGjJpr2KWVveaLEtV_Im5Nw_XiUOoXOZ4c28NzO8orgkeEMINl-qur7e7TYUU7yhRmFs9LvijBJpSiaYfP9f_bG4SOmIc-gMCXVW_L2CBcqr6B_chKr9FOLolydUpeRSGt20oD5EtA2P5e8wLHBw6Gd4dBHVYUqncV58mBBMHdqd5nnwLqGvkFyHMlrfNndN_dJsxjmGhwzfQgeZew9xQdVwCNEv92P6VHzoYUju4jWfF7--Xd_V38vtj5umrrZly4Veyp4BpozBvuduT7RQknHKjaBSdYwI7mTPuNJKascI7FnvFDAiwbSGQ9cRdl40q24X4Gjn6EeITzaAty9AiAebD_Pt4KwhsiWiE5oSzYG1QDvoiTBaEiIw6Kz1edXKn_05ubTYYzjFKZ9vKRdcKUG4yFNsnWpjSCm6_m0rwfbZPLuaZ5_Ns6_mZdblyvLOuTeGNooyidk_-kOUmA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Bo</creator><creator>Liu, Shengyuan</creator><creator>Dong, Hanyu</creator><creator>Zheng, Songsong</creator><creator>Zhao, Ling</creator><creator>Zhu, Ruiqian</creator><creator>Zhao, Limei</creator><creator>Lin, Zhenzhi</creator><creator>Yang, Li</creator><creator>Wang, Qin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1017-500X</orcidid><orcidid>https://orcid.org/0000-0001-8976-8224</orcidid><orcidid>https://orcid.org/0000-0001-9722-135X</orcidid><orcidid>https://orcid.org/0000-0003-2125-9604</orcidid><orcidid>https://orcid.org/0000-0001-6585-2755</orcidid><orcidid>https://orcid.org/0000-0002-6781-9657</orcidid><orcidid>https://orcid.org/0000-0003-1804-9825</orcidid><orcidid>https://orcid.org/0000-0002-8197-8814</orcidid><orcidid>https://orcid.org/0000-0001-5108-0344</orcidid><orcidid>https://orcid.org/0000-0002-3493-1802</orcidid></search><sort><creationdate>2020</creationdate><title>Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms</title><author>Zhang, Bo ; Liu, Shengyuan ; Dong, Hanyu ; Zheng, Songsong ; Zhao, Ling ; Zhu, Ruiqian ; Zhao, Limei ; Lin, Zhenzhi ; Yang, Li ; Wang, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f3a0233abf4eb18576342495267d3154e6f3478768e31ab3fe7a316a9c94add13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abnormal feature of power consumption and supplies</topic><topic>abnormity assessment</topic><topic>Algorithms</topic><topic>Consumers</topic><topic>Consumption</topic><topic>CRITIC method</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Electric utilities</topic><topic>Electricity consumption</topic><topic>Feature extraction</topic><topic>improved radar chart method</topic><topic>Indexes</topic><topic>Power consumption</topic><topic>Power consumption and supplies data</topic><topic>Power demand</topic><topic>Radar</topic><topic>Risk management</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Liu, Shengyuan</creatorcontrib><creatorcontrib>Dong, Hanyu</creatorcontrib><creatorcontrib>Zheng, Songsong</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Zhu, Ruiqian</creatorcontrib><creatorcontrib>Zhao, Limei</creatorcontrib><creatorcontrib>Lin, Zhenzhi</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo</au><au>Liu, Shengyuan</au><au>Dong, Hanyu</au><au>Zheng, Songsong</au><au>Zhao, Ling</au><au>Zhu, Ruiqian</au><au>Zhao, Limei</au><au>Lin, Zhenzhi</au><au>Yang, Li</au><au>Wang, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>27139</spage><epage>27151</epage><pages>27139-27151</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the wide deployment of advancing metering infrastructure (AMI) in power distribution systems, the quantity of power consumers' electricity data is increasing rapidly and the data also become more and more accurate. To make full use of these power consumers' AMI data, a data-driven abnormity assessment algorithm for low-voltage power consumers is proposed based on the CRITIC (CRiteria Importance Though Intercrieria Correlation) method and the improved radar chart method. First, the indexes that characterize the consumer's abnormal features of power consumption and supplies are extracted from the original AMI data. Then, the abnormity assessment algorithm is used to determine power consumers' abnormal features of power consumption and supplies by using the extracted indexes, in which the weights of indexes are determined by the CRITIC method and the assessment value of abnormal features is determined by the improved radar chart method. Next, the abnormity assessment algorithm is used again to assess power consumers' power consumption and supplies abnormities. Finally, the effectiveness of proposed algorithm is demonstrated in case studies by employing AMI data collected from power utilities in Zhejiang Province, China, and the results show that the algorithm can be used in actual applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2970098</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1017-500X</orcidid><orcidid>https://orcid.org/0000-0001-8976-8224</orcidid><orcidid>https://orcid.org/0000-0001-9722-135X</orcidid><orcidid>https://orcid.org/0000-0003-2125-9604</orcidid><orcidid>https://orcid.org/0000-0001-6585-2755</orcidid><orcidid>https://orcid.org/0000-0002-6781-9657</orcidid><orcidid>https://orcid.org/0000-0003-1804-9825</orcidid><orcidid>https://orcid.org/0000-0002-8197-8814</orcidid><orcidid>https://orcid.org/0000-0001-5108-0344</orcidid><orcidid>https://orcid.org/0000-0002-3493-1802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.27139-27151
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454775145
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects abnormal feature of power consumption and supplies
abnormity assessment
Algorithms
Consumers
Consumption
CRITIC method
Electric potential
Electric power distribution
Electric utilities
Electricity consumption
Feature extraction
improved radar chart method
Indexes
Power consumption
Power consumption and supplies data
Power demand
Radar
Risk management
Voltage
title Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Abnormity%20Assessment%20for%20Low-Voltage%20Power%20Consumption%20and%20Supplies%20Based%20on%20CRITIC%20and%20Improved%20Radar%20Chart%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Bo&rft.date=2020&rft.volume=8&rft.spage=27139&rft.epage=27151&rft.pages=27139-27151&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2970098&rft_dat=%3Cproquest_ieee_%3E2454775145%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454775145&rft_id=info:pmid/&rft_ieee_id=8972360&rft_doaj_id=oai_doaj_org_article_916c15d582184a3ca2daf159861150a8&rfr_iscdi=true