Comprehensive Survey on Big Data Privacy Protection

In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.20067-20079
Hauptverfasser: Binjubeir, Mohammed, Ahmed, Abdulghani Ali, Ismail, Mohd Arfian Bin, Sadiq, Ali Safaa, Khurram Khan, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20079
container_issue
container_start_page 20067
container_title IEEE access
container_volume 8
creator Binjubeir, Mohammed
Ahmed, Abdulghani Ali
Ismail, Mohd Arfian Bin
Sadiq, Ali Safaa
Khurram Khan, Muhammad
description In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.
doi_str_mv 10.1109/ACCESS.2019.2962368
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454747371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8943156</ieee_id><doaj_id>oai_doaj_org_article_60ef41a4f982485b8d4b92298c070109</doaj_id><sourcerecordid>2454747371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGqfoDcLXrfmtDlc1rVqoaBQvQ7Z7GxNaTc1uy307U3dIg6BGYb5_5l8CI0JnhKC9cOsKOar1ZRioqdUC8qEukIDSoSesJyJ63_1LRq17QanUKmVywFiRdjtI3xB0_ojZKtDPMIpC0326NfZk-1s9h790bpTyqED1_nQ3KGb2m5bGF3yEH0-zz-K18ny7WVRzJYTx7HqJnlplS6dptKyvOLYSUkrmp4CKVRNVc11LQkTvOKSU11pIJZiB4wxqnLBhmjR-1bBbsw--p2NJxOsN7-NENfGxs67LRiBoebE8lorylVeqoqXmlKtHJY4QUpe973XPobvA7Sd2YRDbNL5hvI87ZcsnTJErJ9yMbRthPpvK8HmDNv0sM0ZtrnATqpxr_IA8KdQmjOSfvEDMvl3fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747371</pqid></control><display><type>article</type><title>Comprehensive Survey on Big Data Privacy Protection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</creator><creatorcontrib>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</creatorcontrib><description>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2962368</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Data analysis ; Data mining ; Data preprocessing ; Data privacy ; Organizations ; Phishing ; Privacy ; privacy protection ; privacy-preserving data mining ; Security</subject><ispartof>IEEE access, 2020, Vol.8, p.20067-20079</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</citedby><cites>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</cites><orcidid>0000-0001-8312-2289 ; 0000-0002-4535-2128 ; 0000-0001-6636-0533 ; 0000-0001-9748-6067 ; 0000-0002-5746-0257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8943156$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Binjubeir, Mohammed</creatorcontrib><creatorcontrib>Ahmed, Abdulghani Ali</creatorcontrib><creatorcontrib>Ismail, Mohd Arfian Bin</creatorcontrib><creatorcontrib>Sadiq, Ali Safaa</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><title>Comprehensive Survey on Big Data Privacy Protection</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</description><subject>Big Data</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data preprocessing</subject><subject>Data privacy</subject><subject>Organizations</subject><subject>Phishing</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>privacy-preserving data mining</subject><subject>Security</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGqfoDcLXrfmtDlc1rVqoaBQvQ7Z7GxNaTc1uy307U3dIg6BGYb5_5l8CI0JnhKC9cOsKOar1ZRioqdUC8qEukIDSoSesJyJ63_1LRq17QanUKmVywFiRdjtI3xB0_ojZKtDPMIpC0326NfZk-1s9h790bpTyqED1_nQ3KGb2m5bGF3yEH0-zz-K18ny7WVRzJYTx7HqJnlplS6dptKyvOLYSUkrmp4CKVRNVc11LQkTvOKSU11pIJZiB4wxqnLBhmjR-1bBbsw--p2NJxOsN7-NENfGxs67LRiBoebE8lorylVeqoqXmlKtHJY4QUpe973XPobvA7Sd2YRDbNL5hvI87ZcsnTJErJ9yMbRthPpvK8HmDNv0sM0ZtrnATqpxr_IA8KdQmjOSfvEDMvl3fw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Binjubeir, Mohammed</creator><creator>Ahmed, Abdulghani Ali</creator><creator>Ismail, Mohd Arfian Bin</creator><creator>Sadiq, Ali Safaa</creator><creator>Khurram Khan, Muhammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8312-2289</orcidid><orcidid>https://orcid.org/0000-0002-4535-2128</orcidid><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0001-9748-6067</orcidid><orcidid>https://orcid.org/0000-0002-5746-0257</orcidid></search><sort><creationdate>2020</creationdate><title>Comprehensive Survey on Big Data Privacy Protection</title><author>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data preprocessing</topic><topic>Data privacy</topic><topic>Organizations</topic><topic>Phishing</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>privacy-preserving data mining</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binjubeir, Mohammed</creatorcontrib><creatorcontrib>Ahmed, Abdulghani Ali</creatorcontrib><creatorcontrib>Ismail, Mohd Arfian Bin</creatorcontrib><creatorcontrib>Sadiq, Ali Safaa</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binjubeir, Mohammed</au><au>Ahmed, Abdulghani Ali</au><au>Ismail, Mohd Arfian Bin</au><au>Sadiq, Ali Safaa</au><au>Khurram Khan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Survey on Big Data Privacy Protection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>20067</spage><epage>20079</epage><pages>20067-20079</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2962368</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8312-2289</orcidid><orcidid>https://orcid.org/0000-0002-4535-2128</orcidid><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0001-9748-6067</orcidid><orcidid>https://orcid.org/0000-0002-5746-0257</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.20067-20079
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454747371
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Big Data
Data analysis
Data mining
Data preprocessing
Data privacy
Organizations
Phishing
Privacy
privacy protection
privacy-preserving data mining
Security
title Comprehensive Survey on Big Data Privacy Protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Survey%20on%20Big%20Data%20Privacy%20Protection&rft.jtitle=IEEE%20access&rft.au=Binjubeir,%20Mohammed&rft.date=2020&rft.volume=8&rft.spage=20067&rft.epage=20079&rft.pages=20067-20079&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2962368&rft_dat=%3Cproquest_ieee_%3E2454747371%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454747371&rft_id=info:pmid/&rft_ieee_id=8943156&rft_doaj_id=oai_doaj_org_article_60ef41a4f982485b8d4b92298c070109&rfr_iscdi=true