Comprehensive Survey on Big Data Privacy Protection
In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolv...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.20067-20079 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20079 |
---|---|
container_issue | |
container_start_page | 20067 |
container_title | IEEE access |
container_volume | 8 |
creator | Binjubeir, Mohammed Ahmed, Abdulghani Ali Ismail, Mohd Arfian Bin Sadiq, Ali Safaa Khurram Khan, Muhammad |
description | In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM. |
doi_str_mv | 10.1109/ACCESS.2019.2962368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454747371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8943156</ieee_id><doaj_id>oai_doaj_org_article_60ef41a4f982485b8d4b92298c070109</doaj_id><sourcerecordid>2454747371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGqfoDcLXrfmtDlc1rVqoaBQvQ7Z7GxNaTc1uy307U3dIg6BGYb5_5l8CI0JnhKC9cOsKOar1ZRioqdUC8qEukIDSoSesJyJ63_1LRq17QanUKmVywFiRdjtI3xB0_ojZKtDPMIpC0326NfZk-1s9h790bpTyqED1_nQ3KGb2m5bGF3yEH0-zz-K18ny7WVRzJYTx7HqJnlplS6dptKyvOLYSUkrmp4CKVRNVc11LQkTvOKSU11pIJZiB4wxqnLBhmjR-1bBbsw--p2NJxOsN7-NENfGxs67LRiBoebE8lorylVeqoqXmlKtHJY4QUpe973XPobvA7Sd2YRDbNL5hvI87ZcsnTJErJ9yMbRthPpvK8HmDNv0sM0ZtrnATqpxr_IA8KdQmjOSfvEDMvl3fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747371</pqid></control><display><type>article</type><title>Comprehensive Survey on Big Data Privacy Protection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</creator><creatorcontrib>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</creatorcontrib><description>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2962368</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Data analysis ; Data mining ; Data preprocessing ; Data privacy ; Organizations ; Phishing ; Privacy ; privacy protection ; privacy-preserving data mining ; Security</subject><ispartof>IEEE access, 2020, Vol.8, p.20067-20079</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</citedby><cites>FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</cites><orcidid>0000-0001-8312-2289 ; 0000-0002-4535-2128 ; 0000-0001-6636-0533 ; 0000-0001-9748-6067 ; 0000-0002-5746-0257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8943156$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Binjubeir, Mohammed</creatorcontrib><creatorcontrib>Ahmed, Abdulghani Ali</creatorcontrib><creatorcontrib>Ismail, Mohd Arfian Bin</creatorcontrib><creatorcontrib>Sadiq, Ali Safaa</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><title>Comprehensive Survey on Big Data Privacy Protection</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</description><subject>Big Data</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data preprocessing</subject><subject>Data privacy</subject><subject>Organizations</subject><subject>Phishing</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>privacy-preserving data mining</subject><subject>Security</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGqfoDcLXrfmtDlc1rVqoaBQvQ7Z7GxNaTc1uy307U3dIg6BGYb5_5l8CI0JnhKC9cOsKOar1ZRioqdUC8qEukIDSoSesJyJ63_1LRq17QanUKmVywFiRdjtI3xB0_ojZKtDPMIpC0326NfZk-1s9h790bpTyqED1_nQ3KGb2m5bGF3yEH0-zz-K18ny7WVRzJYTx7HqJnlplS6dptKyvOLYSUkrmp4CKVRNVc11LQkTvOKSU11pIJZiB4wxqnLBhmjR-1bBbsw--p2NJxOsN7-NENfGxs67LRiBoebE8lorylVeqoqXmlKtHJY4QUpe973XPobvA7Sd2YRDbNL5hvI87ZcsnTJErJ9yMbRthPpvK8HmDNv0sM0ZtrnATqpxr_IA8KdQmjOSfvEDMvl3fw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Binjubeir, Mohammed</creator><creator>Ahmed, Abdulghani Ali</creator><creator>Ismail, Mohd Arfian Bin</creator><creator>Sadiq, Ali Safaa</creator><creator>Khurram Khan, Muhammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8312-2289</orcidid><orcidid>https://orcid.org/0000-0002-4535-2128</orcidid><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0001-9748-6067</orcidid><orcidid>https://orcid.org/0000-0002-5746-0257</orcidid></search><sort><creationdate>2020</creationdate><title>Comprehensive Survey on Big Data Privacy Protection</title><author>Binjubeir, Mohammed ; Ahmed, Abdulghani Ali ; Ismail, Mohd Arfian Bin ; Sadiq, Ali Safaa ; Khurram Khan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5ba89bc927a35d40c772d22d28e768f28f49f71364d47429d9e1a20ce33328563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data preprocessing</topic><topic>Data privacy</topic><topic>Organizations</topic><topic>Phishing</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>privacy-preserving data mining</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binjubeir, Mohammed</creatorcontrib><creatorcontrib>Ahmed, Abdulghani Ali</creatorcontrib><creatorcontrib>Ismail, Mohd Arfian Bin</creatorcontrib><creatorcontrib>Sadiq, Ali Safaa</creatorcontrib><creatorcontrib>Khurram Khan, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binjubeir, Mohammed</au><au>Ahmed, Abdulghani Ali</au><au>Ismail, Mohd Arfian Bin</au><au>Sadiq, Ali Safaa</au><au>Khurram Khan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Survey on Big Data Privacy Protection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>20067</spage><epage>20079</epage><pages>20067-20079</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals' sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2962368</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8312-2289</orcidid><orcidid>https://orcid.org/0000-0002-4535-2128</orcidid><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0001-9748-6067</orcidid><orcidid>https://orcid.org/0000-0002-5746-0257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.20067-20079 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454747371 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Big Data Data analysis Data mining Data preprocessing Data privacy Organizations Phishing Privacy privacy protection privacy-preserving data mining Security |
title | Comprehensive Survey on Big Data Privacy Protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Survey%20on%20Big%20Data%20Privacy%20Protection&rft.jtitle=IEEE%20access&rft.au=Binjubeir,%20Mohammed&rft.date=2020&rft.volume=8&rft.spage=20067&rft.epage=20079&rft.pages=20067-20079&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2962368&rft_dat=%3Cproquest_ieee_%3E2454747371%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454747371&rft_id=info:pmid/&rft_ieee_id=8943156&rft_doaj_id=oai_doaj_org_article_60ef41a4f982485b8d4b92298c070109&rfr_iscdi=true |