High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention

As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.41062-41070
Hauptverfasser: Xie, Jiangjian, Yang, Jun, Ding, Changqing, Li, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41070
container_issue
container_start_page 41062
container_title IEEE access
container_volume 8
creator Xie, Jiangjian
Yang, Jun
Ding, Changqing
Li, Wenbin
description As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.
doi_str_mv 10.1109/ACCESS.2020.2973243
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454746702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8993818</ieee_id><doaj_id>oai_doaj_org_article_3e84732328714f8a8ac01c1124bb3d67</doaj_id><sourcerecordid>2454746702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</originalsourceid><addsrcrecordid>eNpNkUtP3DAUhSNUpCLKL2BjiU27mMGv-LFMI1oi0bKYVl1aN7YDHqXx1HFQ-ff1EITqja-O73d8dU9VXRK8JQTr66Ztb3a7LcUUb6mWjHJ2Up1RIvSG1Uy8-69-X13M8x6Xo4pUy7Pq7214eESNtUsC-4y6yYWn4BYYUef8lMMQLOQQJ_QtOj-iOKA2-Tl7h7o-zOjj93A4xCkAWotP6DPM5bEAzZKjn2zBEvoV8iPa-XHYNDkfbeP0oTodYJz9xet9Xv38cvOjvd3c3X_t2uZuYzlWuUytqRaEix6kJlopoejAda2x5KyulfAKU85rzIraE-647JUA0IQ4CQOw86pbfV2EvTmk8BvSs4kQzIsQ04OBlIMdvWFe8bI-RpUkfFCgwGJiCaG875kTsnhdrV6HFP8sZQ1mH5c0lfEN5TWXXEhMSxdbu2yK85z88PYrweaYmFkTM8fEzGtihbpcqeC9fyOU1kwRxf4BQsWPSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454746702</pqid></control><display><type>article</type><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</creator><creatorcontrib>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</creatorcontrib><description>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973243</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; autoencoder ; Birds ; Feature extraction ; Forestry ; Identification methods ; individual identification ; Logic gates ; LSTM ; Model accuracy ; Monitoring ; Nipponia nippon ; Representations ; self-attention ; Sociology ; Statistics</subject><ispartof>IEEE access, 2020, Vol.8, p.41062-41070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</citedby><cites>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</cites><orcidid>0000-0003-1367-324X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8993818$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xie, Jiangjian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Ding, Changqing</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</description><subject>Accuracy</subject><subject>autoencoder</subject><subject>Birds</subject><subject>Feature extraction</subject><subject>Forestry</subject><subject>Identification methods</subject><subject>individual identification</subject><subject>Logic gates</subject><subject>LSTM</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nipponia nippon</subject><subject>Representations</subject><subject>self-attention</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3DAUhSNUpCLKL2BjiU27mMGv-LFMI1oi0bKYVl1aN7YDHqXx1HFQ-ff1EITqja-O73d8dU9VXRK8JQTr66Ztb3a7LcUUb6mWjHJ2Up1RIvSG1Uy8-69-X13M8x6Xo4pUy7Pq7214eESNtUsC-4y6yYWn4BYYUef8lMMQLOQQJ_QtOj-iOKA2-Tl7h7o-zOjj93A4xCkAWotP6DPM5bEAzZKjn2zBEvoV8iPa-XHYNDkfbeP0oTodYJz9xet9Xv38cvOjvd3c3X_t2uZuYzlWuUytqRaEix6kJlopoejAda2x5KyulfAKU85rzIraE-647JUA0IQ4CQOw86pbfV2EvTmk8BvSs4kQzIsQ04OBlIMdvWFe8bI-RpUkfFCgwGJiCaG875kTsnhdrV6HFP8sZQ1mH5c0lfEN5TWXXEhMSxdbu2yK85z88PYrweaYmFkTM8fEzGtihbpcqeC9fyOU1kwRxf4BQsWPSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xie, Jiangjian</creator><creator>Yang, Jun</creator><creator>Ding, Changqing</creator><creator>Li, Wenbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1367-324X</orcidid></search><sort><creationdate>2020</creationdate><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><author>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>autoencoder</topic><topic>Birds</topic><topic>Feature extraction</topic><topic>Forestry</topic><topic>Identification methods</topic><topic>individual identification</topic><topic>Logic gates</topic><topic>LSTM</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nipponia nippon</topic><topic>Representations</topic><topic>self-attention</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jiangjian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Ding, Changqing</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jiangjian</au><au>Yang, Jun</au><au>Ding, Changqing</au><au>Li, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>41062</spage><epage>41070</epage><pages>41062-41070</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973243</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1367-324X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.41062-41070
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454746702
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
autoencoder
Birds
Feature extraction
Forestry
Identification methods
individual identification
Logic gates
LSTM
Model accuracy
Monitoring
Nipponia nippon
Representations
self-attention
Sociology
Statistics
title High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Accuracy%20Individual%20Identification%20Model%20of%20Crested%20Ibis%20(Nipponia%20Nippon)%20Based%20on%20Autoencoder%20With%20Self-Attention&rft.jtitle=IEEE%20access&rft.au=Xie,%20Jiangjian&rft.date=2020&rft.volume=8&rft.spage=41062&rft.epage=41070&rft.pages=41062-41070&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973243&rft_dat=%3Cproquest_ieee_%3E2454746702%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454746702&rft_id=info:pmid/&rft_ieee_id=8993818&rft_doaj_id=oai_doaj_org_article_3e84732328714f8a8ac01c1124bb3d67&rfr_iscdi=true