High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention
As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To real...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.41062-41070 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41070 |
---|---|
container_issue | |
container_start_page | 41062 |
container_title | IEEE access |
container_volume | 8 |
creator | Xie, Jiangjian Yang, Jun Ding, Changqing Li, Wenbin |
description | As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species. |
doi_str_mv | 10.1109/ACCESS.2020.2973243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454746702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8993818</ieee_id><doaj_id>oai_doaj_org_article_3e84732328714f8a8ac01c1124bb3d67</doaj_id><sourcerecordid>2454746702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</originalsourceid><addsrcrecordid>eNpNkUtP3DAUhSNUpCLKL2BjiU27mMGv-LFMI1oi0bKYVl1aN7YDHqXx1HFQ-ff1EITqja-O73d8dU9VXRK8JQTr66Ztb3a7LcUUb6mWjHJ2Up1RIvSG1Uy8-69-X13M8x6Xo4pUy7Pq7214eESNtUsC-4y6yYWn4BYYUef8lMMQLOQQJ_QtOj-iOKA2-Tl7h7o-zOjj93A4xCkAWotP6DPM5bEAzZKjn2zBEvoV8iPa-XHYNDkfbeP0oTodYJz9xet9Xv38cvOjvd3c3X_t2uZuYzlWuUytqRaEix6kJlopoejAda2x5KyulfAKU85rzIraE-647JUA0IQ4CQOw86pbfV2EvTmk8BvSs4kQzIsQ04OBlIMdvWFe8bI-RpUkfFCgwGJiCaG875kTsnhdrV6HFP8sZQ1mH5c0lfEN5TWXXEhMSxdbu2yK85z88PYrweaYmFkTM8fEzGtihbpcqeC9fyOU1kwRxf4BQsWPSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454746702</pqid></control><display><type>article</type><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</creator><creatorcontrib>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</creatorcontrib><description>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973243</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; autoencoder ; Birds ; Feature extraction ; Forestry ; Identification methods ; individual identification ; Logic gates ; LSTM ; Model accuracy ; Monitoring ; Nipponia nippon ; Representations ; self-attention ; Sociology ; Statistics</subject><ispartof>IEEE access, 2020, Vol.8, p.41062-41070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</citedby><cites>FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</cites><orcidid>0000-0003-1367-324X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8993818$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xie, Jiangjian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Ding, Changqing</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</description><subject>Accuracy</subject><subject>autoencoder</subject><subject>Birds</subject><subject>Feature extraction</subject><subject>Forestry</subject><subject>Identification methods</subject><subject>individual identification</subject><subject>Logic gates</subject><subject>LSTM</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nipponia nippon</subject><subject>Representations</subject><subject>self-attention</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3DAUhSNUpCLKL2BjiU27mMGv-LFMI1oi0bKYVl1aN7YDHqXx1HFQ-ff1EITqja-O73d8dU9VXRK8JQTr66Ztb3a7LcUUb6mWjHJ2Up1RIvSG1Uy8-69-X13M8x6Xo4pUy7Pq7214eESNtUsC-4y6yYWn4BYYUef8lMMQLOQQJ_QtOj-iOKA2-Tl7h7o-zOjj93A4xCkAWotP6DPM5bEAzZKjn2zBEvoV8iPa-XHYNDkfbeP0oTodYJz9xet9Xv38cvOjvd3c3X_t2uZuYzlWuUytqRaEix6kJlopoejAda2x5KyulfAKU85rzIraE-647JUA0IQ4CQOw86pbfV2EvTmk8BvSs4kQzIsQ04OBlIMdvWFe8bI-RpUkfFCgwGJiCaG875kTsnhdrV6HFP8sZQ1mH5c0lfEN5TWXXEhMSxdbu2yK85z88PYrweaYmFkTM8fEzGtihbpcqeC9fyOU1kwRxf4BQsWPSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xie, Jiangjian</creator><creator>Yang, Jun</creator><creator>Ding, Changqing</creator><creator>Li, Wenbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1367-324X</orcidid></search><sort><creationdate>2020</creationdate><title>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</title><author>Xie, Jiangjian ; Yang, Jun ; Ding, Changqing ; Li, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-359296146ba791988682f495907435586e80244503f49b14d47b86aa911d7afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>autoencoder</topic><topic>Birds</topic><topic>Feature extraction</topic><topic>Forestry</topic><topic>Identification methods</topic><topic>individual identification</topic><topic>Logic gates</topic><topic>LSTM</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nipponia nippon</topic><topic>Representations</topic><topic>self-attention</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jiangjian</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Ding, Changqing</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jiangjian</au><au>Yang, Jun</au><au>Ding, Changqing</au><au>Li, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>41062</spage><epage>41070</epage><pages>41062-41070</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the population and the distribution of Crested Ibis (Nipponia nippon) become larger, it is necessary to propose a highly efficient census method to estimate the population size of the Crested Ibis. Passive acoustic monitoring (PAM) has a very good prospect for the Crested Ibis monitoring. To realize the automatic census of the Crested Ibis with PAM, the automatic individual identification method based on the vocalization is the key technology. A novel individual identification model was proposed in this paper, which built the autoencoder based on LSTM to obtain the meaningful latent representation from the raw recording directly, further, embedded self-attention and putted forward a combined training mode to achieve distinctive latent representation. With this model, nine Crested Ibis individuals were identified accurately, the highest accuracy is 0.971, and the average accuracy reaches 0.958. As for other three species, Little owl (Athene noctua), Chiffchaff (Phylloscopus collybita) and Tree pipit (Anthus trivialis), the better performances were achieved than the existing method, which means the proposed model can provide an alternative method for the individual identification of other bird species.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973243</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1367-324X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.41062-41070 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454746702 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy autoencoder Birds Feature extraction Forestry Identification methods individual identification Logic gates LSTM Model accuracy Monitoring Nipponia nippon Representations self-attention Sociology Statistics |
title | High Accuracy Individual Identification Model of Crested Ibis (Nipponia Nippon) Based on Autoencoder With Self-Attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Accuracy%20Individual%20Identification%20Model%20of%20Crested%20Ibis%20(Nipponia%20Nippon)%20Based%20on%20Autoencoder%20With%20Self-Attention&rft.jtitle=IEEE%20access&rft.au=Xie,%20Jiangjian&rft.date=2020&rft.volume=8&rft.spage=41062&rft.epage=41070&rft.pages=41062-41070&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973243&rft_dat=%3Cproquest_ieee_%3E2454746702%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454746702&rft_id=info:pmid/&rft_ieee_id=8993818&rft_doaj_id=oai_doaj_org_article_3e84732328714f8a8ac01c1124bb3d67&rfr_iscdi=true |