A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network
Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.24675-24686 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24686 |
---|---|
container_issue | |
container_start_page | 24675 |
container_title | IEEE access |
container_volume | 8 |
creator | Long, Huan Chen, Chang Gu, Wei Xie, Jihua Wang, Zheng Li, Guodong |
description | Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network. |
doi_str_mv | 10.1109/ACCESS.2020.2970548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454742527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8976185</ieee_id><doaj_id>oai_doaj_org_article_0b982505c351483dbe0dacb2d835fa4d</doaj_id><sourcerecordid>2454742527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjSqQQJRfwMVSz1nGX7FzjLK0IK3aSpQrlh1PwNvdmDpeUP99DUGoc5nR07w3H6-qLiisKIX2suv7q9vbFQMGK9YqkEJ_qk4ZbdqaS94c_VefVOfzvIUSukBSnVb3HVnbbOt1Cs84kT7uXZjQk273EFPIj3syxkQ6N8W0tzvyM75gIps4z2SNGYcc4kTCRPIjknWYcwru8IZ9x_wS0-_P1fFodzOev-ez6u7r1a_-ut78-HbTd5t6EKBz7ZT2AwflJGA7OmobpRveWIvAlWgFNCiB-0aBpW2BBokelaM40nKVFfysull0fbRb85TC3qa_Jtpg3oCYHoxNOQw7NOBazSTIgUsqNPcOwdvBMa-5HK3wRevLovWU4p8Dztls4yFNZX3DhBRKMMlU6eJL15DKNxKOH1MpmFdfzOKLefXFvPtSWBcLKyDiB0O3qqFa8n-u64gw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454742527</pqid></control><display><type>article</type><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</creator><creatorcontrib>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</creatorcontrib><description>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2970548</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abnormal detection ; Algorithms ; Anomalies ; Anomaly detection ; control chart ; Control charts ; data-driven algorithm ; Distribution networks ; Electric power distribution ; Electric power grids ; Feeders ; Indexes ; Power loss ; Power supplies ; Risk assessment ; Risk management ; Technology assessment</subject><ispartof>IEEE access, 2020, Vol.8, p.24675-24686</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</citedby><cites>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</cites><orcidid>0000-0003-2701-0009 ; 0000-0002-6578-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8976185$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Long, Huan</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Xie, Jihua</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</description><subject>abnormal detection</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>control chart</subject><subject>Control charts</subject><subject>data-driven algorithm</subject><subject>Distribution networks</subject><subject>Electric power distribution</subject><subject>Electric power grids</subject><subject>Feeders</subject><subject>Indexes</subject><subject>Power loss</subject><subject>Power supplies</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Technology assessment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjSqQQJRfwMVSz1nGX7FzjLK0IK3aSpQrlh1PwNvdmDpeUP99DUGoc5nR07w3H6-qLiisKIX2suv7q9vbFQMGK9YqkEJ_qk4ZbdqaS94c_VefVOfzvIUSukBSnVb3HVnbbOt1Cs84kT7uXZjQk273EFPIj3syxkQ6N8W0tzvyM75gIps4z2SNGYcc4kTCRPIjknWYcwru8IZ9x_wS0-_P1fFodzOev-ez6u7r1a_-ut78-HbTd5t6EKBz7ZT2AwflJGA7OmobpRveWIvAlWgFNCiB-0aBpW2BBokelaM40nKVFfysull0fbRb85TC3qa_Jtpg3oCYHoxNOQw7NOBazSTIgUsqNPcOwdvBMa-5HK3wRevLovWU4p8Dztls4yFNZX3DhBRKMMlU6eJL15DKNxKOH1MpmFdfzOKLefXFvPtSWBcLKyDiB0O3qqFa8n-u64gw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Long, Huan</creator><creator>Chen, Chang</creator><creator>Gu, Wei</creator><creator>Xie, Jihua</creator><creator>Wang, Zheng</creator><creator>Li, Guodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2701-0009</orcidid><orcidid>https://orcid.org/0000-0002-6578-9140</orcidid></search><sort><creationdate>2020</creationdate><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><author>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abnormal detection</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>control chart</topic><topic>Control charts</topic><topic>data-driven algorithm</topic><topic>Distribution networks</topic><topic>Electric power distribution</topic><topic>Electric power grids</topic><topic>Feeders</topic><topic>Indexes</topic><topic>Power loss</topic><topic>Power supplies</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Huan</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Xie, Jihua</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Huan</au><au>Chen, Chang</au><au>Gu, Wei</au><au>Xie, Jihua</au><au>Wang, Zheng</au><au>Li, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>24675</spage><epage>24686</epage><pages>24675-24686</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2970548</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2701-0009</orcidid><orcidid>https://orcid.org/0000-0002-6578-9140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.24675-24686 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454742527 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | abnormal detection Algorithms Anomalies Anomaly detection control chart Control charts data-driven algorithm Distribution networks Electric power distribution Electric power grids Feeders Indexes Power loss Power supplies Risk assessment Risk management Technology assessment |
title | A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Combined%20Algorithm%20for%20Abnormal%20Power%20Loss%20Detection%20in%20the%20Distribution%20Network&rft.jtitle=IEEE%20access&rft.au=Long,%20Huan&rft.date=2020&rft.volume=8&rft.spage=24675&rft.epage=24686&rft.pages=24675-24686&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2970548&rft_dat=%3Cproquest_cross%3E2454742527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454742527&rft_id=info:pmid/&rft_ieee_id=8976185&rft_doaj_id=oai_doaj_org_article_0b982505c351483dbe0dacb2d835fa4d&rfr_iscdi=true |