A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network

Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.24675-24686
Hauptverfasser: Long, Huan, Chen, Chang, Gu, Wei, Xie, Jihua, Wang, Zheng, Li, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24686
container_issue
container_start_page 24675
container_title IEEE access
container_volume 8
creator Long, Huan
Chen, Chang
Gu, Wei
Xie, Jihua
Wang, Zheng
Li, Guodong
description Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.
doi_str_mv 10.1109/ACCESS.2020.2970548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454742527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8976185</ieee_id><doaj_id>oai_doaj_org_article_0b982505c351483dbe0dacb2d835fa4d</doaj_id><sourcerecordid>2454742527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjSqQQJRfwMVSz1nGX7FzjLK0IK3aSpQrlh1PwNvdmDpeUP99DUGoc5nR07w3H6-qLiisKIX2suv7q9vbFQMGK9YqkEJ_qk4ZbdqaS94c_VefVOfzvIUSukBSnVb3HVnbbOt1Cs84kT7uXZjQk273EFPIj3syxkQ6N8W0tzvyM75gIps4z2SNGYcc4kTCRPIjknWYcwru8IZ9x_wS0-_P1fFodzOev-ez6u7r1a_-ut78-HbTd5t6EKBz7ZT2AwflJGA7OmobpRveWIvAlWgFNCiB-0aBpW2BBokelaM40nKVFfysull0fbRb85TC3qa_Jtpg3oCYHoxNOQw7NOBazSTIgUsqNPcOwdvBMa-5HK3wRevLovWU4p8Dztls4yFNZX3DhBRKMMlU6eJL15DKNxKOH1MpmFdfzOKLefXFvPtSWBcLKyDiB0O3qqFa8n-u64gw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454742527</pqid></control><display><type>article</type><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</creator><creatorcontrib>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</creatorcontrib><description>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2970548</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abnormal detection ; Algorithms ; Anomalies ; Anomaly detection ; control chart ; Control charts ; data-driven algorithm ; Distribution networks ; Electric power distribution ; Electric power grids ; Feeders ; Indexes ; Power loss ; Power supplies ; Risk assessment ; Risk management ; Technology assessment</subject><ispartof>IEEE access, 2020, Vol.8, p.24675-24686</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</citedby><cites>FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</cites><orcidid>0000-0003-2701-0009 ; 0000-0002-6578-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8976185$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Long, Huan</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Xie, Jihua</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</description><subject>abnormal detection</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>control chart</subject><subject>Control charts</subject><subject>data-driven algorithm</subject><subject>Distribution networks</subject><subject>Electric power distribution</subject><subject>Electric power grids</subject><subject>Feeders</subject><subject>Indexes</subject><subject>Power loss</subject><subject>Power supplies</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Technology assessment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjSqQQJRfwMVSz1nGX7FzjLK0IK3aSpQrlh1PwNvdmDpeUP99DUGoc5nR07w3H6-qLiisKIX2suv7q9vbFQMGK9YqkEJ_qk4ZbdqaS94c_VefVOfzvIUSukBSnVb3HVnbbOt1Cs84kT7uXZjQk273EFPIj3syxkQ6N8W0tzvyM75gIps4z2SNGYcc4kTCRPIjknWYcwru8IZ9x_wS0-_P1fFodzOev-ez6u7r1a_-ut78-HbTd5t6EKBz7ZT2AwflJGA7OmobpRveWIvAlWgFNCiB-0aBpW2BBokelaM40nKVFfysull0fbRb85TC3qa_Jtpg3oCYHoxNOQw7NOBazSTIgUsqNPcOwdvBMa-5HK3wRevLovWU4p8Dztls4yFNZX3DhBRKMMlU6eJL15DKNxKOH1MpmFdfzOKLefXFvPtSWBcLKyDiB0O3qqFa8n-u64gw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Long, Huan</creator><creator>Chen, Chang</creator><creator>Gu, Wei</creator><creator>Xie, Jihua</creator><creator>Wang, Zheng</creator><creator>Li, Guodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2701-0009</orcidid><orcidid>https://orcid.org/0000-0002-6578-9140</orcidid></search><sort><creationdate>2020</creationdate><title>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</title><author>Long, Huan ; Chen, Chang ; Gu, Wei ; Xie, Jihua ; Wang, Zheng ; Li, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b78dc307b50e9fb1a678636aae03749406e503d670a19037c5ede7b1ef1536a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abnormal detection</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>control chart</topic><topic>Control charts</topic><topic>data-driven algorithm</topic><topic>Distribution networks</topic><topic>Electric power distribution</topic><topic>Electric power grids</topic><topic>Feeders</topic><topic>Indexes</topic><topic>Power loss</topic><topic>Power supplies</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Huan</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Xie, Jihua</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Huan</au><au>Chen, Chang</au><au>Gu, Wei</au><au>Xie, Jihua</au><au>Wang, Zheng</au><au>Li, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>24675</spage><epage>24686</epage><pages>24675-24686</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power loss, consisting of technical loss (TL) and non-technical loss (NTL), reflects the effective utilization rate of energy and the management level of power grids. This paper proposes a data-driven combined algorithm to systematically identify anomalies of power loss in the distribution network, including the abnormal type, time, and position. The detection process contains three stages: abnormal feeder detection, abnormal time detection, and abnormal position detection. The suspected abnormal feeders are first detected from all feeders in the distribution network by the data-driven algorithm based on the daily power supply and electricity sales data. Then, the control chart is employed to further monitor the fluctuation of the power loss of each suspected abnormal feeder and discover its abnormal time. Based on the detected abnormal time, its abnormal position is finally located through the risk assessment technology. Numerous experiments based on the real data show that the proposed data-driven combined algorithm can effectively detect and analyze abnormal power loss in the distribution network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2970548</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2701-0009</orcidid><orcidid>https://orcid.org/0000-0002-6578-9140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.24675-24686
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454742527
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects abnormal detection
Algorithms
Anomalies
Anomaly detection
control chart
Control charts
data-driven algorithm
Distribution networks
Electric power distribution
Electric power grids
Feeders
Indexes
Power loss
Power supplies
Risk assessment
Risk management
Technology assessment
title A Data-Driven Combined Algorithm for Abnormal Power Loss Detection in the Distribution Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Combined%20Algorithm%20for%20Abnormal%20Power%20Loss%20Detection%20in%20the%20Distribution%20Network&rft.jtitle=IEEE%20access&rft.au=Long,%20Huan&rft.date=2020&rft.volume=8&rft.spage=24675&rft.epage=24686&rft.pages=24675-24686&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2970548&rft_dat=%3Cproquest_cross%3E2454742527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454742527&rft_id=info:pmid/&rft_ieee_id=8976185&rft_doaj_id=oai_doaj_org_article_0b982505c351483dbe0dacb2d835fa4d&rfr_iscdi=true