Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint
As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which comb...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.23936-23950 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23950 |
---|---|
container_issue | |
container_start_page | 23936 |
container_title | IEEE access |
container_volume | 8 |
creator | Deng, Zexi Yan, Zihan Huang, Huimin Shen, Hong |
description | As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2020.2970166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454722092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974273</ieee_id><doaj_id>oai_doaj_org_article_b9cbccbbd38d48d0bc70700c047f9922</doaj_id><sourcerecordid>2454722092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIoMEXcKnEucNJ2iY5TtWASZM4bIhjlCbu6NiakaRC-3s6OiF8sfXs92zrJck9gSkhIB9nVTVfraYUKEyp5EDK8iK5oaSUGStYefmvvk7uQtjCEGKACn6TrOcd-s0xm31rj-lah890ZT7Q9ru226SuS18woncb7ND1Ia3c_tDHU2t1DBH3IX1v40e6bvc49LoQvW67eJtcNXoX8O6cJ8nb03xdvWTL1-dFNVtmJgcRM4tSMo1WyroU3BAGgEwXsiF1WVAhuJC8IKCFBUolWt4II2hJcmuN1BrYJFmMutbprTr4dq_9UTndql_A-Y3SPrZmh6qWpjamri0TNh8Ea8OBAxjIeSMlpYPWw6h18O6rxxDV1vW-G85XNC9yTinI0xQbp4x3IXhs_rYSUCc31OiGOrmhzm4MrPuR1SLiH2P4LqecsR_tm4WK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722092</pqid></control><display><type>article</type><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</creator><creatorcontrib>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</creatorcontrib><description>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2970166</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; cuckoo search algorithm ; DVFS ; Exploitation ; Gaussian distribution ; heterogeneous multiprocessor system ; Heterogeneous networks ; Heuristic algorithms ; Multiprocessing ; Performance enhancement ; Processor scheduling ; Program processors ; Random walk ; Scheduling ; Search algorithms ; Strategy ; Task analysis ; Task scheduling ; Time factors</subject><ispartof>IEEE access, 2020, Vol.8, p.23936-23950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</citedby><cites>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</cites><orcidid>0000-0002-5881-6649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974273$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Deng, Zexi</creatorcontrib><creatorcontrib>Yan, Zihan</creatorcontrib><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>cuckoo search algorithm</subject><subject>DVFS</subject><subject>Exploitation</subject><subject>Gaussian distribution</subject><subject>heterogeneous multiprocessor system</subject><subject>Heterogeneous networks</subject><subject>Heuristic algorithms</subject><subject>Multiprocessing</subject><subject>Performance enhancement</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Random walk</subject><subject>Scheduling</subject><subject>Search algorithms</subject><subject>Strategy</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Time factors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIoMEXcKnEucNJ2iY5TtWASZM4bIhjlCbu6NiakaRC-3s6OiF8sfXs92zrJck9gSkhIB9nVTVfraYUKEyp5EDK8iK5oaSUGStYefmvvk7uQtjCEGKACn6TrOcd-s0xm31rj-lah890ZT7Q9ru226SuS18woncb7ND1Ia3c_tDHU2t1DBH3IX1v40e6bvc49LoQvW67eJtcNXoX8O6cJ8nb03xdvWTL1-dFNVtmJgcRM4tSMo1WyroU3BAGgEwXsiF1WVAhuJC8IKCFBUolWt4II2hJcmuN1BrYJFmMutbprTr4dq_9UTndql_A-Y3SPrZmh6qWpjamri0TNh8Ea8OBAxjIeSMlpYPWw6h18O6rxxDV1vW-G85XNC9yTinI0xQbp4x3IXhs_rYSUCc31OiGOrmhzm4MrPuR1SLiH2P4LqecsR_tm4WK</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Deng, Zexi</creator><creator>Yan, Zihan</creator><creator>Huang, Huimin</creator><creator>Shen, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5881-6649</orcidid></search><sort><creationdate>2020</creationdate><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><author>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>cuckoo search algorithm</topic><topic>DVFS</topic><topic>Exploitation</topic><topic>Gaussian distribution</topic><topic>heterogeneous multiprocessor system</topic><topic>Heterogeneous networks</topic><topic>Heuristic algorithms</topic><topic>Multiprocessing</topic><topic>Performance enhancement</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Random walk</topic><topic>Scheduling</topic><topic>Search algorithms</topic><topic>Strategy</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Time factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zexi</creatorcontrib><creatorcontrib>Yan, Zihan</creatorcontrib><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zexi</au><au>Yan, Zihan</au><au>Huang, Huimin</au><au>Shen, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>23936</spage><epage>23950</epage><pages>23936-23950</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2970166</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5881-6649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.23936-23950 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454722092 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive algorithms Algorithms cuckoo search algorithm DVFS Exploitation Gaussian distribution heterogeneous multiprocessor system Heterogeneous networks Heuristic algorithms Multiprocessing Performance enhancement Processor scheduling Program processors Random walk Scheduling Search algorithms Strategy Task analysis Task scheduling Time factors |
title | Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Task%20Scheduling%20on%20Heterogeneous%20Computing%20Systems%20With%20Time%20Constraint&rft.jtitle=IEEE%20access&rft.au=Deng,%20Zexi&rft.date=2020&rft.volume=8&rft.spage=23936&rft.epage=23950&rft.pages=23936-23950&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2970166&rft_dat=%3Cproquest_ieee_%3E2454722092%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454722092&rft_id=info:pmid/&rft_ieee_id=8974273&rft_doaj_id=oai_doaj_org_article_b9cbccbbd38d48d0bc70700c047f9922&rfr_iscdi=true |