Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint

As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.23936-23950
Hauptverfasser: Deng, Zexi, Yan, Zihan, Huang, Huimin, Shen, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23950
container_issue
container_start_page 23936
container_title IEEE access
container_volume 8
creator Deng, Zexi
Yan, Zihan
Huang, Huimin
Shen, Hong
description As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2020.2970166
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454722092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974273</ieee_id><doaj_id>oai_doaj_org_article_b9cbccbbd38d48d0bc70700c047f9922</doaj_id><sourcerecordid>2454722092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIoMEXcKnEucNJ2iY5TtWASZM4bIhjlCbu6NiakaRC-3s6OiF8sfXs92zrJck9gSkhIB9nVTVfraYUKEyp5EDK8iK5oaSUGStYefmvvk7uQtjCEGKACn6TrOcd-s0xm31rj-lah890ZT7Q9ru226SuS18woncb7ND1Ia3c_tDHU2t1DBH3IX1v40e6bvc49LoQvW67eJtcNXoX8O6cJ8nb03xdvWTL1-dFNVtmJgcRM4tSMo1WyroU3BAGgEwXsiF1WVAhuJC8IKCFBUolWt4II2hJcmuN1BrYJFmMutbprTr4dq_9UTndql_A-Y3SPrZmh6qWpjamri0TNh8Ea8OBAxjIeSMlpYPWw6h18O6rxxDV1vW-G85XNC9yTinI0xQbp4x3IXhs_rYSUCc31OiGOrmhzm4MrPuR1SLiH2P4LqecsR_tm4WK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722092</pqid></control><display><type>article</type><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</creator><creatorcontrib>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</creatorcontrib><description>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2970166</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; cuckoo search algorithm ; DVFS ; Exploitation ; Gaussian distribution ; heterogeneous multiprocessor system ; Heterogeneous networks ; Heuristic algorithms ; Multiprocessing ; Performance enhancement ; Processor scheduling ; Program processors ; Random walk ; Scheduling ; Search algorithms ; Strategy ; Task analysis ; Task scheduling ; Time factors</subject><ispartof>IEEE access, 2020, Vol.8, p.23936-23950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</citedby><cites>FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</cites><orcidid>0000-0002-5881-6649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974273$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Deng, Zexi</creatorcontrib><creatorcontrib>Yan, Zihan</creatorcontrib><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>cuckoo search algorithm</subject><subject>DVFS</subject><subject>Exploitation</subject><subject>Gaussian distribution</subject><subject>heterogeneous multiprocessor system</subject><subject>Heterogeneous networks</subject><subject>Heuristic algorithms</subject><subject>Multiprocessing</subject><subject>Performance enhancement</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Random walk</subject><subject>Scheduling</subject><subject>Search algorithms</subject><subject>Strategy</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Time factors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIoMEXcKnEucNJ2iY5TtWASZM4bIhjlCbu6NiakaRC-3s6OiF8sfXs92zrJck9gSkhIB9nVTVfraYUKEyp5EDK8iK5oaSUGStYefmvvk7uQtjCEGKACn6TrOcd-s0xm31rj-lah890ZT7Q9ru226SuS18woncb7ND1Ia3c_tDHU2t1DBH3IX1v40e6bvc49LoQvW67eJtcNXoX8O6cJ8nb03xdvWTL1-dFNVtmJgcRM4tSMo1WyroU3BAGgEwXsiF1WVAhuJC8IKCFBUolWt4II2hJcmuN1BrYJFmMutbprTr4dq_9UTndql_A-Y3SPrZmh6qWpjamri0TNh8Ea8OBAxjIeSMlpYPWw6h18O6rxxDV1vW-G85XNC9yTinI0xQbp4x3IXhs_rYSUCc31OiGOrmhzm4MrPuR1SLiH2P4LqecsR_tm4WK</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Deng, Zexi</creator><creator>Yan, Zihan</creator><creator>Huang, Huimin</creator><creator>Shen, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5881-6649</orcidid></search><sort><creationdate>2020</creationdate><title>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</title><author>Deng, Zexi ; Yan, Zihan ; Huang, Huimin ; Shen, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de993aed99b687c1300e3a59f1b652887897510a8d0229ed7f8c82614ddc9aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>cuckoo search algorithm</topic><topic>DVFS</topic><topic>Exploitation</topic><topic>Gaussian distribution</topic><topic>heterogeneous multiprocessor system</topic><topic>Heterogeneous networks</topic><topic>Heuristic algorithms</topic><topic>Multiprocessing</topic><topic>Performance enhancement</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Random walk</topic><topic>Scheduling</topic><topic>Search algorithms</topic><topic>Strategy</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Time factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zexi</creatorcontrib><creatorcontrib>Yan, Zihan</creatorcontrib><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zexi</au><au>Yan, Zihan</au><au>Huang, Huimin</au><au>Shen, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>23936</spage><epage>23950</epage><pages>23936-23950</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a technique to help achieve high performance in parallel and distributed heterogeneous computing systems, task scheduling has attracted considerable interest. In this paper, we propose an effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First, to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS) algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method. The results validate our approach and show its superiority in comparison with the state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2970166</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5881-6649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.23936-23950
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454722092
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Algorithms
cuckoo search algorithm
DVFS
Exploitation
Gaussian distribution
heterogeneous multiprocessor system
Heterogeneous networks
Heuristic algorithms
Multiprocessing
Performance enhancement
Processor scheduling
Program processors
Random walk
Scheduling
Search algorithms
Strategy
Task analysis
Task scheduling
Time factors
title Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Task%20Scheduling%20on%20Heterogeneous%20Computing%20Systems%20With%20Time%20Constraint&rft.jtitle=IEEE%20access&rft.au=Deng,%20Zexi&rft.date=2020&rft.volume=8&rft.spage=23936&rft.epage=23950&rft.pages=23936-23950&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2970166&rft_dat=%3Cproquest_ieee_%3E2454722092%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454722092&rft_id=info:pmid/&rft_ieee_id=8974273&rft_doaj_id=oai_doaj_org_article_b9cbccbbd38d48d0bc70700c047f9922&rfr_iscdi=true