Discrete Spherical Image Representation for CNN-Based Inclination Estimation
How an image is represented as the input of a convolutional neural network (CNN) is important because this input directly influences the performance of the CNN. In this paper, we investigate the representation of spherical images by focusing on the inclination estimation of a spherical camera. Unlik...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.2008-2022 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2022 |
---|---|
container_issue | |
container_start_page | 2008 |
container_title | IEEE access |
container_volume | 8 |
creator | Shan, Yuhao Li, Shigang |
description | How an image is represented as the input of a convolutional neural network (CNN) is important because this input directly influences the performance of the CNN. In this paper, we investigate the representation of spherical images by focusing on the inclination estimation of a spherical camera. Unlike other approaches to CNN-based inclination estimation, a spherical image is represented as a geodesic-division-based discrete spherical image (DSI) that is obtained by sampling a sphere as uniformly as possible. The input of the CNN is a single image that consists of five parallelograms flattened from a regular icosahedron. To demonstrate the advantage of the proposed method, comparative experiments are conducted with two other spherical image representations, namely, equirectangular projection (ERP) and cubemap projection (CMP). The experimental results show that the proposed method using a geodesic-division-based discrete spherical image as the CNN input obtains the best performance-better than that of the cubemap and far superior to that of the equirectangular image. The effect of the image representations used becomes more significant as the relative inclination decreases. Moreover, comparative experiments are conducted using the state-of-the-art methods for spherical camera inclination compensation to further illustrate the superiority of the DSI representation. Consequently, the proposed method provides an important reference for the development of CNNs intended for spherical images. |
doi_str_mv | 10.1109/ACCESS.2019.2962133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454717037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8943206</ieee_id><doaj_id>oai_doaj_org_article_5bc017b582b646ae98b9e4c97845f4c4</doaj_id><sourcerecordid>2454717037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4f36fb8f9868c46419b267b14fda389672625acfc55fb15ac04ac116471bcc633</originalsourceid><addsrcrecordid>eNpNUctKA0EQXETBoH6BlwXPG-f9OMY1aiBEMHoeZiY9uiHZjTObg3_vmA3BvnTR3VXVUEVxi9EYY6TvJ3U9XS7HBGE9JloQTOlZMSJY6IpyKs7_4cviJqU1yqXyiMtRMX9sko_QQ7ncfUFsvN2Us639hPINdhEStL3tm64tQxfLerGoHmyCVTlr_aZph8009c32AK-Li2A3CW6O_ar4eJq-1y_V_PV5Vk_mlWeS9RULVASnglZCeSYY1o4I6TALK0uVFpIIwq0PnvPgcEaIWY-xYBI77wWlV8Vs0F11dm12MdvHH9PZxhwGXfw0NvaN34DhziMsHVfECSYsaOU0MK-lYjwwz7LW3aC1i933HlJv1t0-tvl9QxjPlhJRma_ocOVjl1KEcHLFyPylYIYUzF8K5phCZt0OrAYATgylGSVI0F9vvoHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454717037</pqid></control><display><type>article</type><title>Discrete Spherical Image Representation for CNN-Based Inclination Estimation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shan, Yuhao ; Li, Shigang</creator><creatorcontrib>Shan, Yuhao ; Li, Shigang</creatorcontrib><description>How an image is represented as the input of a convolutional neural network (CNN) is important because this input directly influences the performance of the CNN. In this paper, we investigate the representation of spherical images by focusing on the inclination estimation of a spherical camera. Unlike other approaches to CNN-based inclination estimation, a spherical image is represented as a geodesic-division-based discrete spherical image (DSI) that is obtained by sampling a sphere as uniformly as possible. The input of the CNN is a single image that consists of five parallelograms flattened from a regular icosahedron. To demonstrate the advantage of the proposed method, comparative experiments are conducted with two other spherical image representations, namely, equirectangular projection (ERP) and cubemap projection (CMP). The experimental results show that the proposed method using a geodesic-division-based discrete spherical image as the CNN input obtains the best performance-better than that of the cubemap and far superior to that of the equirectangular image. The effect of the image representations used becomes more significant as the relative inclination decreases. Moreover, comparative experiments are conducted using the state-of-the-art methods for spherical camera inclination compensation to further illustrate the superiority of the DSI representation. Consequently, the proposed method provides an important reference for the development of CNNs intended for spherical images.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2962133</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Computer vision ; Convolutional neural networks ; Estimation ; Icosahedrons ; Image representation ; Inclination ; inclination estimation ; Parallelograms ; Representations ; Solid modeling ; spherical images ; spherical representation ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.2008-2022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4f36fb8f9868c46419b267b14fda389672625acfc55fb15ac04ac116471bcc633</citedby><cites>FETCH-LOGICAL-c474t-4f36fb8f9868c46419b267b14fda389672625acfc55fb15ac04ac116471bcc633</cites><orcidid>0000-0003-4821-326X ; 0000-0001-7197-5495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8943206$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Shan, Yuhao</creatorcontrib><creatorcontrib>Li, Shigang</creatorcontrib><title>Discrete Spherical Image Representation for CNN-Based Inclination Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>How an image is represented as the input of a convolutional neural network (CNN) is important because this input directly influences the performance of the CNN. In this paper, we investigate the representation of spherical images by focusing on the inclination estimation of a spherical camera. Unlike other approaches to CNN-based inclination estimation, a spherical image is represented as a geodesic-division-based discrete spherical image (DSI) that is obtained by sampling a sphere as uniformly as possible. The input of the CNN is a single image that consists of five parallelograms flattened from a regular icosahedron. To demonstrate the advantage of the proposed method, comparative experiments are conducted with two other spherical image representations, namely, equirectangular projection (ERP) and cubemap projection (CMP). The experimental results show that the proposed method using a geodesic-division-based discrete spherical image as the CNN input obtains the best performance-better than that of the cubemap and far superior to that of the equirectangular image. The effect of the image representations used becomes more significant as the relative inclination decreases. Moreover, comparative experiments are conducted using the state-of-the-art methods for spherical camera inclination compensation to further illustrate the superiority of the DSI representation. Consequently, the proposed method provides an important reference for the development of CNNs intended for spherical images.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Estimation</subject><subject>Icosahedrons</subject><subject>Image representation</subject><subject>Inclination</subject><subject>inclination estimation</subject><subject>Parallelograms</subject><subject>Representations</subject><subject>Solid modeling</subject><subject>spherical images</subject><subject>spherical representation</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXETBoH6BlwXPG-f9OMY1aiBEMHoeZiY9uiHZjTObg3_vmA3BvnTR3VXVUEVxi9EYY6TvJ3U9XS7HBGE9JloQTOlZMSJY6IpyKs7_4cviJqU1yqXyiMtRMX9sko_QQ7ncfUFsvN2Us639hPINdhEStL3tm64tQxfLerGoHmyCVTlr_aZph8009c32AK-Li2A3CW6O_ar4eJq-1y_V_PV5Vk_mlWeS9RULVASnglZCeSYY1o4I6TALK0uVFpIIwq0PnvPgcEaIWY-xYBI77wWlV8Vs0F11dm12MdvHH9PZxhwGXfw0NvaN34DhziMsHVfECSYsaOU0MK-lYjwwz7LW3aC1i933HlJv1t0-tvl9QxjPlhJRma_ocOVjl1KEcHLFyPylYIYUzF8K5phCZt0OrAYATgylGSVI0F9vvoHg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shan, Yuhao</creator><creator>Li, Shigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4821-326X</orcidid><orcidid>https://orcid.org/0000-0001-7197-5495</orcidid></search><sort><creationdate>2020</creationdate><title>Discrete Spherical Image Representation for CNN-Based Inclination Estimation</title><author>Shan, Yuhao ; Li, Shigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4f36fb8f9868c46419b267b14fda389672625acfc55fb15ac04ac116471bcc633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Estimation</topic><topic>Icosahedrons</topic><topic>Image representation</topic><topic>Inclination</topic><topic>inclination estimation</topic><topic>Parallelograms</topic><topic>Representations</topic><topic>Solid modeling</topic><topic>spherical images</topic><topic>spherical representation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Yuhao</creatorcontrib><creatorcontrib>Li, Shigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Yuhao</au><au>Li, Shigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Spherical Image Representation for CNN-Based Inclination Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>2008</spage><epage>2022</epage><pages>2008-2022</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>How an image is represented as the input of a convolutional neural network (CNN) is important because this input directly influences the performance of the CNN. In this paper, we investigate the representation of spherical images by focusing on the inclination estimation of a spherical camera. Unlike other approaches to CNN-based inclination estimation, a spherical image is represented as a geodesic-division-based discrete spherical image (DSI) that is obtained by sampling a sphere as uniformly as possible. The input of the CNN is a single image that consists of five parallelograms flattened from a regular icosahedron. To demonstrate the advantage of the proposed method, comparative experiments are conducted with two other spherical image representations, namely, equirectangular projection (ERP) and cubemap projection (CMP). The experimental results show that the proposed method using a geodesic-division-based discrete spherical image as the CNN input obtains the best performance-better than that of the cubemap and far superior to that of the equirectangular image. The effect of the image representations used becomes more significant as the relative inclination decreases. Moreover, comparative experiments are conducted using the state-of-the-art methods for spherical camera inclination compensation to further illustrate the superiority of the DSI representation. Consequently, the proposed method provides an important reference for the development of CNNs intended for spherical images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2962133</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4821-326X</orcidid><orcidid>https://orcid.org/0000-0001-7197-5495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.2008-2022 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454717037 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Cameras Computer vision Convolutional neural networks Estimation Icosahedrons Image representation Inclination inclination estimation Parallelograms Representations Solid modeling spherical images spherical representation Task analysis |
title | Discrete Spherical Image Representation for CNN-Based Inclination Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Spherical%20Image%20Representation%20for%20CNN-Based%20Inclination%20Estimation&rft.jtitle=IEEE%20access&rft.au=Shan,%20Yuhao&rft.date=2020&rft.volume=8&rft.spage=2008&rft.epage=2022&rft.pages=2008-2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2962133&rft_dat=%3Cproquest_ieee_%3E2454717037%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454717037&rft_id=info:pmid/&rft_ieee_id=8943206&rft_doaj_id=oai_doaj_org_article_5bc017b582b646ae98b9e4c97845f4c4&rfr_iscdi=true |