Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting

A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outlier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.45271-45291
Hauptverfasser: Tang, Zhenhao, Zhao, Gengnan, Wang, Gong, Ouyang, Tinghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45291
container_issue
container_start_page 45271
container_title IEEE access
container_volume 8
creator Tang, Zhenhao
Zhao, Gengnan
Wang, Gong
Ouyang, Tinghui
description A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.
doi_str_mv 10.1109/ACCESS.2020.2978169
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454716429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1cba64c66f0c44c29c75aaed797587db</doaj_id><sourcerecordid>2454716429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Ai8Bz6n7L9nsSUpobaHgIRWPy2Z3tqY23bpJEb-9W1PEOcwbhseb4YfQPcFTQrB8nJXlvKqmFFM8pVIUJJdXaESjpCxj-fW_-RZNum6HY51dmRihp-V3HRqbzA8dtPUekkXQLXz58JE4H5Lq3Yc-3UBok7fmYJPqCGCThQ9gdNc3h-0dunF638HkomP0uphvymW6fnlelbN1ajgr-lQQ7GpmsMwpFMRFIVJkllCeW0qYsZmxYMCZIjZWGC0F4Ey6zEENVmM2Rqsh13q9U8fQtDp8K68b9bvwYat06BuzB0VMrXNu8txhw7mh0ohMa7AiXiyErWPWw5B1DP7zBF2vdv4UDvF9RXnGBck5ldHFBpcJvusCuL-rBKszeDWAV2fw6gKe_QBnxnXa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716429</pqid></control><display><type>article</type><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><source>Directory of Open Access Journals (DOAJ)</source><source>IEEE Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</creator><creatorcontrib>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</creatorcontrib><description>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2978169</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; artificial neural networks ; data preprocessing ; Decomposition ; Forecasting ; hybrid ensemble framework ; Model accuracy ; Optimization ; Outliers (statistics) ; Preprocessing ; Wind speed ; Wind speed forecasting</subject><ispartof>IEEE access, 2020, Vol.8, p.45271-45291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</citedby><cites>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</cites><orcidid>0000-0002-4650-6870 ; 0000-0002-9234-9132 ; 0000-0003-1670-9084 ; 0000-0002-9049-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Zhao, Gengnan</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Ouyang, Tinghui</creatorcontrib><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><title>IEEE access</title><description>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</description><subject>Algorithms</subject><subject>artificial neural networks</subject><subject>data preprocessing</subject><subject>Decomposition</subject><subject>Forecasting</subject><subject>hybrid ensemble framework</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Preprocessing</subject><subject>Wind speed</subject><subject>Wind speed forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Ai8Bz6n7L9nsSUpobaHgIRWPy2Z3tqY23bpJEb-9W1PEOcwbhseb4YfQPcFTQrB8nJXlvKqmFFM8pVIUJJdXaESjpCxj-fW_-RZNum6HY51dmRihp-V3HRqbzA8dtPUekkXQLXz58JE4H5Lq3Yc-3UBok7fmYJPqCGCThQ9gdNc3h-0dunF638HkomP0uphvymW6fnlelbN1ajgr-lQQ7GpmsMwpFMRFIVJkllCeW0qYsZmxYMCZIjZWGC0F4Ey6zEENVmM2Rqsh13q9U8fQtDp8K68b9bvwYat06BuzB0VMrXNu8txhw7mh0ohMa7AiXiyErWPWw5B1DP7zBF2vdv4UDvF9RXnGBck5ldHFBpcJvusCuL-rBKszeDWAV2fw6gKe_QBnxnXa</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Zhenhao</creator><creator>Zhao, Gengnan</creator><creator>Wang, Gong</creator><creator>Ouyang, Tinghui</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4650-6870</orcidid><orcidid>https://orcid.org/0000-0002-9234-9132</orcidid><orcidid>https://orcid.org/0000-0003-1670-9084</orcidid><orcidid>https://orcid.org/0000-0002-9049-8513</orcidid></search><sort><creationdate>2020</creationdate><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><author>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>artificial neural networks</topic><topic>data preprocessing</topic><topic>Decomposition</topic><topic>Forecasting</topic><topic>hybrid ensemble framework</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Preprocessing</topic><topic>Wind speed</topic><topic>Wind speed forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Zhao, Gengnan</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Ouyang, Tinghui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhenhao</au><au>Zhao, Gengnan</au><au>Wang, Gong</au><au>Ouyang, Tinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</atitle><jtitle>IEEE access</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>45271</spage><epage>45291</epage><pages>45271-45291</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2020.2978169</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4650-6870</orcidid><orcidid>https://orcid.org/0000-0002-9234-9132</orcidid><orcidid>https://orcid.org/0000-0003-1670-9084</orcidid><orcidid>https://orcid.org/0000-0002-9049-8513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.45271-45291
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454716429
source Directory of Open Access Journals (DOAJ); IEEE Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
artificial neural networks
data preprocessing
Decomposition
Forecasting
hybrid ensemble framework
Model accuracy
Optimization
Outliers (statistics)
Preprocessing
Wind speed
Wind speed forecasting
title Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Ensemble%20Framework%20for%20Short-Term%20Wind%20Speed%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Tang,%20Zhenhao&rft.date=2020&rft.volume=8&rft.spage=45271&rft.epage=45291&rft.pages=45271-45291&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2020.2978169&rft_dat=%3Cproquest_doaj_%3E2454716429%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716429&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1cba64c66f0c44c29c75aaed797587db&rfr_iscdi=true