Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting
A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outlier...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.45271-45291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45291 |
---|---|
container_issue | |
container_start_page | 45271 |
container_title | IEEE access |
container_volume | 8 |
creator | Tang, Zhenhao Zhao, Gengnan Wang, Gong Ouyang, Tinghui |
description | A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy. |
doi_str_mv | 10.1109/ACCESS.2020.2978169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454716429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1cba64c66f0c44c29c75aaed797587db</doaj_id><sourcerecordid>2454716429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Ai8Bz6n7L9nsSUpobaHgIRWPy2Z3tqY23bpJEb-9W1PEOcwbhseb4YfQPcFTQrB8nJXlvKqmFFM8pVIUJJdXaESjpCxj-fW_-RZNum6HY51dmRihp-V3HRqbzA8dtPUekkXQLXz58JE4H5Lq3Yc-3UBok7fmYJPqCGCThQ9gdNc3h-0dunF638HkomP0uphvymW6fnlelbN1ajgr-lQQ7GpmsMwpFMRFIVJkllCeW0qYsZmxYMCZIjZWGC0F4Ey6zEENVmM2Rqsh13q9U8fQtDp8K68b9bvwYat06BuzB0VMrXNu8txhw7mh0ohMa7AiXiyErWPWw5B1DP7zBF2vdv4UDvF9RXnGBck5ldHFBpcJvusCuL-rBKszeDWAV2fw6gKe_QBnxnXa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716429</pqid></control><display><type>article</type><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><source>Directory of Open Access Journals (DOAJ)</source><source>IEEE Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</creator><creatorcontrib>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</creatorcontrib><description>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2978169</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; artificial neural networks ; data preprocessing ; Decomposition ; Forecasting ; hybrid ensemble framework ; Model accuracy ; Optimization ; Outliers (statistics) ; Preprocessing ; Wind speed ; Wind speed forecasting</subject><ispartof>IEEE access, 2020, Vol.8, p.45271-45291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</citedby><cites>FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</cites><orcidid>0000-0002-4650-6870 ; 0000-0002-9234-9132 ; 0000-0003-1670-9084 ; 0000-0002-9049-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Zhao, Gengnan</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Ouyang, Tinghui</creatorcontrib><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><title>IEEE access</title><description>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</description><subject>Algorithms</subject><subject>artificial neural networks</subject><subject>data preprocessing</subject><subject>Decomposition</subject><subject>Forecasting</subject><subject>hybrid ensemble framework</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Preprocessing</subject><subject>Wind speed</subject><subject>Wind speed forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Ai8Bz6n7L9nsSUpobaHgIRWPy2Z3tqY23bpJEb-9W1PEOcwbhseb4YfQPcFTQrB8nJXlvKqmFFM8pVIUJJdXaESjpCxj-fW_-RZNum6HY51dmRihp-V3HRqbzA8dtPUekkXQLXz58JE4H5Lq3Yc-3UBok7fmYJPqCGCThQ9gdNc3h-0dunF638HkomP0uphvymW6fnlelbN1ajgr-lQQ7GpmsMwpFMRFIVJkllCeW0qYsZmxYMCZIjZWGC0F4Ey6zEENVmM2Rqsh13q9U8fQtDp8K68b9bvwYat06BuzB0VMrXNu8txhw7mh0ohMa7AiXiyErWPWw5B1DP7zBF2vdv4UDvF9RXnGBck5ldHFBpcJvusCuL-rBKszeDWAV2fw6gKe_QBnxnXa</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Zhenhao</creator><creator>Zhao, Gengnan</creator><creator>Wang, Gong</creator><creator>Ouyang, Tinghui</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4650-6870</orcidid><orcidid>https://orcid.org/0000-0002-9234-9132</orcidid><orcidid>https://orcid.org/0000-0003-1670-9084</orcidid><orcidid>https://orcid.org/0000-0002-9049-8513</orcidid></search><sort><creationdate>2020</creationdate><title>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</title><author>Tang, Zhenhao ; Zhao, Gengnan ; Wang, Gong ; Ouyang, Tinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-710fb3c0962e81f9621975d1246d213cd5cdecefc8cef38ca97e059f5febeda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>artificial neural networks</topic><topic>data preprocessing</topic><topic>Decomposition</topic><topic>Forecasting</topic><topic>hybrid ensemble framework</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Preprocessing</topic><topic>Wind speed</topic><topic>Wind speed forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Zhao, Gengnan</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Ouyang, Tinghui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhenhao</au><au>Zhao, Gengnan</au><au>Wang, Gong</au><au>Ouyang, Tinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting</atitle><jtitle>IEEE access</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>45271</spage><epage>45291</epage><pages>45271-45291</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and the variational mode decomposition algorithm decompose the original series to extract the trend and time-frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM, ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations of the individual forecasting models and achieves promising forecasting accuracy.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2020.2978169</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4650-6870</orcidid><orcidid>https://orcid.org/0000-0002-9234-9132</orcidid><orcidid>https://orcid.org/0000-0003-1670-9084</orcidid><orcidid>https://orcid.org/0000-0002-9049-8513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.45271-45291 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454716429 |
source | Directory of Open Access Journals (DOAJ); IEEE Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms artificial neural networks data preprocessing Decomposition Forecasting hybrid ensemble framework Model accuracy Optimization Outliers (statistics) Preprocessing Wind speed Wind speed forecasting |
title | Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Ensemble%20Framework%20for%20Short-Term%20Wind%20Speed%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Tang,%20Zhenhao&rft.date=2020&rft.volume=8&rft.spage=45271&rft.epage=45291&rft.pages=45271-45291&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2020.2978169&rft_dat=%3Cproquest_doaj_%3E2454716429%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716429&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1cba64c66f0c44c29c75aaed797587db&rfr_iscdi=true |