Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization

This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.12179-12187
1. Verfasser: Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12187
container_issue
container_start_page 12179
container_title IEEE access
container_volume 8
creator Liu, Wei
description This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.
doi_str_mv 10.1109/ACCESS.2020.2964328
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454716278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950401</ieee_id><doaj_id>oai_doaj_org_article_104336ef488048faa190a41da755b872</doaj_id><sourcerecordid>2454716278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</originalsourceid><addsrcrecordid>eNpVUctKBDEQHERBUb_AS8DzrHlNHsd1XB-wIvg4h95JIllmN2syc9CvNzoi2pduuquqC6qqzgieEYL1xbxtF09PM4opnlEtOKNqrzqiROiaNUzs_5kPq9Oc17iUKqtGHlX9YxwHhx52Q9iEDxhC3CIfE1pCHur70Dt0FfKQwmr8PkWPHscEPVrUbdxsXOocWsbXAgldRpeQnUUFNt8OqI193L7_Uz6pDjz02Z3-9OPq5Xrx3N7Wy4ebu3a-rDuO1VADlk3DtNfSW2ed6IRQtnOYCrqyhMqG8IZoyiVw6YntrF0JCaCJtV5KLdlxdTfp2ghrs0thA-ndRAjmexHTq4FUHPfOEMwZE85zpTBXHoBoDJxYKBZWStKidT5p7VJ8G10ezDqOaVvsG8obLomgUhUUm1Bdijkn53-_Emy-UjJTSuYrJfOTUmGdTazgnPtlKN1gjgn7BGbyjZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716278</pqid></control><display><type>article</type><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><source>IEEE Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>DOAJ开放获取期刊资源库</source><creator>Liu, Wei</creator><creatorcontrib>Liu, Wei</creatorcontrib><description>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2964328</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Ant colony optimization ; ant colony optimization (ACO) ; Datasets ; Electronic commerce ; last-mile distribution ; Logistics ; Logistics management ; Mathematical models ; Optimization ; Parameters ; Route optimization ; Rural e-commerce logistics (RECL) ; Subsidies ; Task analysis ; Vehicles</subject><ispartof>IEEE access, 2020, Vol.8, p.12179-12187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</citedby><cites>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</cites><orcidid>0000-0002-5801-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</description><subject>Analytical models</subject><subject>Ant colony optimization</subject><subject>ant colony optimization (ACO)</subject><subject>Datasets</subject><subject>Electronic commerce</subject><subject>last-mile distribution</subject><subject>Logistics</subject><subject>Logistics management</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Route optimization</subject><subject>Rural e-commerce logistics (RECL)</subject><subject>Subsidies</subject><subject>Task analysis</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUctKBDEQHERBUb_AS8DzrHlNHsd1XB-wIvg4h95JIllmN2syc9CvNzoi2pduuquqC6qqzgieEYL1xbxtF09PM4opnlEtOKNqrzqiROiaNUzs_5kPq9Oc17iUKqtGHlX9YxwHhx52Q9iEDxhC3CIfE1pCHur70Dt0FfKQwmr8PkWPHscEPVrUbdxsXOocWsbXAgldRpeQnUUFNt8OqI193L7_Uz6pDjz02Z3-9OPq5Xrx3N7Wy4ebu3a-rDuO1VADlk3DtNfSW2ed6IRQtnOYCrqyhMqG8IZoyiVw6YntrF0JCaCJtV5KLdlxdTfp2ghrs0thA-ndRAjmexHTq4FUHPfOEMwZE85zpTBXHoBoDJxYKBZWStKidT5p7VJ8G10ezDqOaVvsG8obLomgUhUUm1Bdijkn53-_Emy-UjJTSuYrJfOTUmGdTazgnPtlKN1gjgn7BGbyjZU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5801-4523</orcidid></search><sort><creationdate>2020</creationdate><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><author>Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Ant colony optimization</topic><topic>ant colony optimization (ACO)</topic><topic>Datasets</topic><topic>Electronic commerce</topic><topic>last-mile distribution</topic><topic>Logistics</topic><topic>Logistics management</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Route optimization</topic><topic>Rural e-commerce logistics (RECL)</topic><topic>Subsidies</topic><topic>Task analysis</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ开放获取期刊资源库</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12179</spage><epage>12187</epage><pages>12179-12187</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2964328</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5801-4523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.12179-12187
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454716278
source IEEE Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; DOAJ开放获取期刊资源库
subjects Analytical models
Ant colony optimization
ant colony optimization (ACO)
Datasets
Electronic commerce
last-mile distribution
Logistics
Logistics management
Mathematical models
Optimization
Parameters
Route optimization
Rural e-commerce logistics (RECL)
Subsidies
Task analysis
Vehicles
title Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Route%20Optimization%20for%20Last-Mile%20Distribution%20of%20Rural%20E-Commerce%20Logistics%20Based%20on%20Ant%20Colony%20Optimization&rft.jtitle=IEEE%20access&rft.au=Liu,%20Wei&rft.date=2020&rft.volume=8&rft.spage=12179&rft.epage=12187&rft.pages=12179-12187&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2964328&rft_dat=%3Cproquest_cross%3E2454716278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716278&rft_id=info:pmid/&rft_ieee_id=8950401&rft_doaj_id=oai_doaj_org_article_104336ef488048faa190a41da755b872&rfr_iscdi=true