Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization
This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.12179-12187 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12187 |
---|---|
container_issue | |
container_start_page | 12179 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Wei |
description | This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network. |
doi_str_mv | 10.1109/ACCESS.2020.2964328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454716278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950401</ieee_id><doaj_id>oai_doaj_org_article_104336ef488048faa190a41da755b872</doaj_id><sourcerecordid>2454716278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</originalsourceid><addsrcrecordid>eNpVUctKBDEQHERBUb_AS8DzrHlNHsd1XB-wIvg4h95JIllmN2syc9CvNzoi2pduuquqC6qqzgieEYL1xbxtF09PM4opnlEtOKNqrzqiROiaNUzs_5kPq9Oc17iUKqtGHlX9YxwHhx52Q9iEDxhC3CIfE1pCHur70Dt0FfKQwmr8PkWPHscEPVrUbdxsXOocWsbXAgldRpeQnUUFNt8OqI193L7_Uz6pDjz02Z3-9OPq5Xrx3N7Wy4ebu3a-rDuO1VADlk3DtNfSW2ed6IRQtnOYCrqyhMqG8IZoyiVw6YntrF0JCaCJtV5KLdlxdTfp2ghrs0thA-ndRAjmexHTq4FUHPfOEMwZE85zpTBXHoBoDJxYKBZWStKidT5p7VJ8G10ezDqOaVvsG8obLomgUhUUm1Bdijkn53-_Emy-UjJTSuYrJfOTUmGdTazgnPtlKN1gjgn7BGbyjZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716278</pqid></control><display><type>article</type><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><source>IEEE Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>DOAJ开放获取期刊资源库</source><creator>Liu, Wei</creator><creatorcontrib>Liu, Wei</creatorcontrib><description>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2964328</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Ant colony optimization ; ant colony optimization (ACO) ; Datasets ; Electronic commerce ; last-mile distribution ; Logistics ; Logistics management ; Mathematical models ; Optimization ; Parameters ; Route optimization ; Rural e-commerce logistics (RECL) ; Subsidies ; Task analysis ; Vehicles</subject><ispartof>IEEE access, 2020, Vol.8, p.12179-12187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</citedby><cites>FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</cites><orcidid>0000-0002-5801-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</description><subject>Analytical models</subject><subject>Ant colony optimization</subject><subject>ant colony optimization (ACO)</subject><subject>Datasets</subject><subject>Electronic commerce</subject><subject>last-mile distribution</subject><subject>Logistics</subject><subject>Logistics management</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Route optimization</subject><subject>Rural e-commerce logistics (RECL)</subject><subject>Subsidies</subject><subject>Task analysis</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUctKBDEQHERBUb_AS8DzrHlNHsd1XB-wIvg4h95JIllmN2syc9CvNzoi2pduuquqC6qqzgieEYL1xbxtF09PM4opnlEtOKNqrzqiROiaNUzs_5kPq9Oc17iUKqtGHlX9YxwHhx52Q9iEDxhC3CIfE1pCHur70Dt0FfKQwmr8PkWPHscEPVrUbdxsXOocWsbXAgldRpeQnUUFNt8OqI193L7_Uz6pDjz02Z3-9OPq5Xrx3N7Wy4ebu3a-rDuO1VADlk3DtNfSW2ed6IRQtnOYCrqyhMqG8IZoyiVw6YntrF0JCaCJtV5KLdlxdTfp2ghrs0thA-ndRAjmexHTq4FUHPfOEMwZE85zpTBXHoBoDJxYKBZWStKidT5p7VJ8G10ezDqOaVvsG8obLomgUhUUm1Bdijkn53-_Emy-UjJTSuYrJfOTUmGdTazgnPtlKN1gjgn7BGbyjZU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5801-4523</orcidid></search><sort><creationdate>2020</creationdate><title>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</title><author>Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a075539f97fdede6c668dce0262bd127514519247a47f1dcddb67aa91ddf77973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Ant colony optimization</topic><topic>ant colony optimization (ACO)</topic><topic>Datasets</topic><topic>Electronic commerce</topic><topic>last-mile distribution</topic><topic>Logistics</topic><topic>Logistics management</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Route optimization</topic><topic>Rural e-commerce logistics (RECL)</topic><topic>Subsidies</topic><topic>Task analysis</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ开放获取期刊资源库</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12179</spage><epage>12187</epage><pages>12179-12187</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims to solve the last-mile distribution of rural e-commerce logistics (RECL) for the survival of third-party logistics enterprise. Considering the features of the RECL (long transport chain and low consumption density), A route optimization model is constructed for RECL's last-mile distribution to maximize the profit of the logistics enterprise, which is subsidized by the government. To solve the model, the ant colony optimization (ACO) was improved to suit the RECL's last-mile distribution by modifying the heuristic information, the update rule of pheromone, and the solution construction. Next, the optimal combinations of the default parameters in the improved ACO were determined through Matlab tests on five test datasets in different sizes. The other parameters were configured according to the scale of the RECL. On this basis, the improved ACO was proved effective through example analysis on the said test datasets. The analysis results also reflect how the number of vehicles affects the maximum profit of the logistics enterprise and the coverage of the RECL logistics network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2964328</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5801-4523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.12179-12187 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454716278 |
source | IEEE Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; DOAJ开放获取期刊资源库 |
subjects | Analytical models Ant colony optimization ant colony optimization (ACO) Datasets Electronic commerce last-mile distribution Logistics Logistics management Mathematical models Optimization Parameters Route optimization Rural e-commerce logistics (RECL) Subsidies Task analysis Vehicles |
title | Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Route%20Optimization%20for%20Last-Mile%20Distribution%20of%20Rural%20E-Commerce%20Logistics%20Based%20on%20Ant%20Colony%20Optimization&rft.jtitle=IEEE%20access&rft.au=Liu,%20Wei&rft.date=2020&rft.volume=8&rft.spage=12179&rft.epage=12187&rft.pages=12179-12187&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2964328&rft_dat=%3Cproquest_cross%3E2454716278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716278&rft_id=info:pmid/&rft_ieee_id=8950401&rft_doaj_id=oai_doaj_org_article_104336ef488048faa190a41da755b872&rfr_iscdi=true |