A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning

Accurately identifying protein-ATP (Adenosine-5'-triphosphate) binding sites is significant for protein function annotation and new drug invention. Previous studies often utilize classical machine learning classification algorithms to predict protein-ATP binding sites based on protein primary s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.21485-21495
Hauptverfasser: Song, Jiazhi, Liang, Yanchun, Liu, Guixia, Wang, Rongquan, Sun, Liyan, Zhang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21495
container_issue
container_start_page 21485
container_title IEEE access
container_volume 8
creator Song, Jiazhi
Liang, Yanchun
Liu, Guixia
Wang, Rongquan
Sun, Liyan
Zhang, Ping
description Accurately identifying protein-ATP (Adenosine-5'-triphosphate) binding sites is significant for protein function annotation and new drug invention. Previous studies often utilize classical machine learning classification algorithms to predict protein-ATP binding sites based on protein primary sequence. However, deep learning as a newly developed technique has shown outstanding performance in various fields. In this work, we introduce the deep convolutional neural network for protein-ATP binding sites prediction based on sequence information. Two classification networks are developed including a residual-inception-based predictor and a multi-inception-based predictor, then the ensemble learning is applied by giving optimized weights to each network architecture to combine them for more superior performance. We examine the performance of our proposed method on two groups of independent testing sets including a classic ATP-binding benchmark dataset and a newly proposed ATP-binding dataset. As a result, our proposed method outperforms other state-of-art sequence-based predictors with the AUC of 0.922 and 0.896 respectively which illustrates the efficacy of deep learning technique in protein-ATP binding sites prediction. The source code and benchmark datasets can be downloaded at https://github.com/tlsjz/ATPbinding.
doi_str_mv 10.1109/ACCESS.2020.2968847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454712602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8967091</ieee_id><doaj_id>oai_doaj_org_article_3673c57fe9114a31b6c989d38fdd71d3</doaj_id><sourcerecordid>2454712602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ceb54d41a2acd5578c00a4f24887ce332d9236d491752dca50d1d0b4c5dd354d3</originalsourceid><addsrcrecordid>eNpNkU1u2zAQhYWiBRokOUE2BLqWy1-RXDqqnQZw0wBO1wRNjlK6suiSUooepbcNHQVBuXnEcN43GL6quiJ4QQjWn5dtu9puFxRTvKC6UYrLd9UZJY2umWDN-__uH6vLnPe4HFVKQp5V_5boLj5Bj-4T-ODGEAf0Dcaf0aMuJrR8uK-vw-DD8Ii2YYSM1ikeSnMcIQxFw8Gmv2gLvycYXHm-thk8KpD1lE-s2KEvAEfUxuEp9tOJb3t0B1N6kfFPTL-QHTxaDRkOux7QBmwayryL6kNn-wyXr3pe_VivHtqv9eb7zW273NSOYzXWDnaCe04stc4LIZXD2PKOcqWkA8ao15Q1nmsiBfXOCuyJxzvuhPesONl5dTtzfbR7c5w3MtEG81KI6dHYNAbXg2GNZE7IDjQh3DKya5xW2jPVeS-JZ4X1aWYdUyw_kkezj1MqG2dDueCS0AbT0sXmLpdizgm6t6kEm1OkZo7UnCI1r5EW19XsCgDw5lC6kVgT9gx7R52b</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454712602</pqid></control><display><type>article</type><title>A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Jiazhi ; Liang, Yanchun ; Liu, Guixia ; Wang, Rongquan ; Sun, Liyan ; Zhang, Ping</creator><creatorcontrib>Song, Jiazhi ; Liang, Yanchun ; Liu, Guixia ; Wang, Rongquan ; Sun, Liyan ; Zhang, Ping</creatorcontrib><description>Accurately identifying protein-ATP (Adenosine-5'-triphosphate) binding sites is significant for protein function annotation and new drug invention. Previous studies often utilize classical machine learning classification algorithms to predict protein-ATP binding sites based on protein primary sequence. However, deep learning as a newly developed technique has shown outstanding performance in various fields. In this work, we introduce the deep convolutional neural network for protein-ATP binding sites prediction based on sequence information. Two classification networks are developed including a residual-inception-based predictor and a multi-inception-based predictor, then the ensemble learning is applied by giving optimized weights to each network architecture to combine them for more superior performance. We examine the performance of our proposed method on two groups of independent testing sets including a classic ATP-binding benchmark dataset and a newly proposed ATP-binding dataset. As a result, our proposed method outperforms other state-of-art sequence-based predictors with the AUC of 0.922 and 0.896 respectively which illustrates the efficacy of deep learning technique in protein-ATP binding sites prediction. The source code and benchmark datasets can be downloaded at https://github.com/tlsjz/ATPbinding.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2968847</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adenosine ; Algorithms ; Annotations ; Artificial neural networks ; Benchmarks ; Binding sites ; Classification ; Computer architecture ; Convolutional neural networks ; Datasets ; deep convolutional neural network ; Deep learning ; Ensemble learning ; Feature extraction ; inception neural network ; Machine learning ; Neural networks ; Prediction methods ; protein primary sequence ; Protein sequence ; Protein-ATP binding sites prediction ; Proteins ; Solvents ; Source code</subject><ispartof>IEEE access, 2020, Vol.8, p.21485-21495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ceb54d41a2acd5578c00a4f24887ce332d9236d491752dca50d1d0b4c5dd354d3</citedby><cites>FETCH-LOGICAL-c408t-ceb54d41a2acd5578c00a4f24887ce332d9236d491752dca50d1d0b4c5dd354d3</cites><orcidid>0000-0001-9272-7191 ; 0000-0002-1147-3968 ; 0000-0002-3375-9561 ; 0000-0003-2145-6341 ; 0000-0002-2456-1289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8967091$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Song, Jiazhi</creatorcontrib><creatorcontrib>Liang, Yanchun</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Wang, Rongquan</creatorcontrib><creatorcontrib>Sun, Liyan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurately identifying protein-ATP (Adenosine-5'-triphosphate) binding sites is significant for protein function annotation and new drug invention. Previous studies often utilize classical machine learning classification algorithms to predict protein-ATP binding sites based on protein primary sequence. However, deep learning as a newly developed technique has shown outstanding performance in various fields. In this work, we introduce the deep convolutional neural network for protein-ATP binding sites prediction based on sequence information. Two classification networks are developed including a residual-inception-based predictor and a multi-inception-based predictor, then the ensemble learning is applied by giving optimized weights to each network architecture to combine them for more superior performance. We examine the performance of our proposed method on two groups of independent testing sets including a classic ATP-binding benchmark dataset and a newly proposed ATP-binding dataset. As a result, our proposed method outperforms other state-of-art sequence-based predictors with the AUC of 0.922 and 0.896 respectively which illustrates the efficacy of deep learning technique in protein-ATP binding sites prediction. The source code and benchmark datasets can be downloaded at https://github.com/tlsjz/ATPbinding.</description><subject>Adenosine</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>Binding sites</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep convolutional neural network</subject><subject>Deep learning</subject><subject>Ensemble learning</subject><subject>Feature extraction</subject><subject>inception neural network</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Prediction methods</subject><subject>protein primary sequence</subject><subject>Protein sequence</subject><subject>Protein-ATP binding sites prediction</subject><subject>Proteins</subject><subject>Solvents</subject><subject>Source code</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1u2zAQhYWiBRokOUE2BLqWy1-RXDqqnQZw0wBO1wRNjlK6suiSUooepbcNHQVBuXnEcN43GL6quiJ4QQjWn5dtu9puFxRTvKC6UYrLd9UZJY2umWDN-__uH6vLnPe4HFVKQp5V_5boLj5Bj-4T-ODGEAf0Dcaf0aMuJrR8uK-vw-DD8Ii2YYSM1ikeSnMcIQxFw8Gmv2gLvycYXHm-thk8KpD1lE-s2KEvAEfUxuEp9tOJb3t0B1N6kfFPTL-QHTxaDRkOux7QBmwayryL6kNn-wyXr3pe_VivHtqv9eb7zW273NSOYzXWDnaCe04stc4LIZXD2PKOcqWkA8ao15Q1nmsiBfXOCuyJxzvuhPesONl5dTtzfbR7c5w3MtEG81KI6dHYNAbXg2GNZE7IDjQh3DKya5xW2jPVeS-JZ4X1aWYdUyw_kkezj1MqG2dDueCS0AbT0sXmLpdizgm6t6kEm1OkZo7UnCI1r5EW19XsCgDw5lC6kVgT9gx7R52b</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Song, Jiazhi</creator><creator>Liang, Yanchun</creator><creator>Liu, Guixia</creator><creator>Wang, Rongquan</creator><creator>Sun, Liyan</creator><creator>Zhang, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9272-7191</orcidid><orcidid>https://orcid.org/0000-0002-1147-3968</orcidid><orcidid>https://orcid.org/0000-0002-3375-9561</orcidid><orcidid>https://orcid.org/0000-0003-2145-6341</orcidid><orcidid>https://orcid.org/0000-0002-2456-1289</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning</title><author>Song, Jiazhi ; Liang, Yanchun ; Liu, Guixia ; Wang, Rongquan ; Sun, Liyan ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ceb54d41a2acd5578c00a4f24887ce332d9236d491752dca50d1d0b4c5dd354d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>Binding sites</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep convolutional neural network</topic><topic>Deep learning</topic><topic>Ensemble learning</topic><topic>Feature extraction</topic><topic>inception neural network</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Prediction methods</topic><topic>protein primary sequence</topic><topic>Protein sequence</topic><topic>Protein-ATP binding sites prediction</topic><topic>Proteins</topic><topic>Solvents</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jiazhi</creatorcontrib><creatorcontrib>Liang, Yanchun</creatorcontrib><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Wang, Rongquan</creatorcontrib><creatorcontrib>Sun, Liyan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jiazhi</au><au>Liang, Yanchun</au><au>Liu, Guixia</au><au>Wang, Rongquan</au><au>Sun, Liyan</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>21485</spage><epage>21495</epage><pages>21485-21495</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurately identifying protein-ATP (Adenosine-5'-triphosphate) binding sites is significant for protein function annotation and new drug invention. Previous studies often utilize classical machine learning classification algorithms to predict protein-ATP binding sites based on protein primary sequence. However, deep learning as a newly developed technique has shown outstanding performance in various fields. In this work, we introduce the deep convolutional neural network for protein-ATP binding sites prediction based on sequence information. Two classification networks are developed including a residual-inception-based predictor and a multi-inception-based predictor, then the ensemble learning is applied by giving optimized weights to each network architecture to combine them for more superior performance. We examine the performance of our proposed method on two groups of independent testing sets including a classic ATP-binding benchmark dataset and a newly proposed ATP-binding dataset. As a result, our proposed method outperforms other state-of-art sequence-based predictors with the AUC of 0.922 and 0.896 respectively which illustrates the efficacy of deep learning technique in protein-ATP binding sites prediction. The source code and benchmark datasets can be downloaded at https://github.com/tlsjz/ATPbinding.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2968847</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9272-7191</orcidid><orcidid>https://orcid.org/0000-0002-1147-3968</orcidid><orcidid>https://orcid.org/0000-0002-3375-9561</orcidid><orcidid>https://orcid.org/0000-0003-2145-6341</orcidid><orcidid>https://orcid.org/0000-0002-2456-1289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.21485-21495
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454712602
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine
Algorithms
Annotations
Artificial neural networks
Benchmarks
Binding sites
Classification
Computer architecture
Convolutional neural networks
Datasets
deep convolutional neural network
Deep learning
Ensemble learning
Feature extraction
inception neural network
Machine learning
Neural networks
Prediction methods
protein primary sequence
Protein sequence
Protein-ATP binding sites prediction
Proteins
Solvents
Source code
title A Novel Prediction Method for ATP-Binding Sites From Protein Primary Sequences Based on Fusion of Deep Convolutional Neural Network and Ensemble Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Prediction%20Method%20for%20ATP-Binding%20Sites%20From%20Protein%20Primary%20Sequences%20Based%20on%20Fusion%20of%20Deep%20Convolutional%20Neural%20Network%20and%20Ensemble%20Learning&rft.jtitle=IEEE%20access&rft.au=Song,%20Jiazhi&rft.date=2020&rft.volume=8&rft.spage=21485&rft.epage=21495&rft.pages=21485-21495&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2968847&rft_dat=%3Cproquest_cross%3E2454712602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454712602&rft_id=info:pmid/&rft_ieee_id=8967091&rft_doaj_id=oai_doaj_org_article_3673c57fe9114a31b6c989d38fdd71d3&rfr_iscdi=true