Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications

•Idling of long haul heavy duty vehicles produces a high fuel consumption.•Hybrid APU represents a solution to reduce fuel consumption in hotel mode operation.•A real-time stochastic PMS is proposed for a hybrid battery/SOFC APU.•The SPSA based PMS achieves a 6% energy saving compared to fuzzy split...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2020-10, Vol.221, p.113197, Article 113197
Hauptverfasser: Barelli, L., Bidini, G., Ciupăgeanu, D.A., Pianese, C., Polverino, P., Sorrentino, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113197
container_title Energy conversion and management
container_volume 221
creator Barelli, L.
Bidini, G.
Ciupăgeanu, D.A.
Pianese, C.
Polverino, P.
Sorrentino, M.
description •Idling of long haul heavy duty vehicles produces a high fuel consumption.•Hybrid APU represents a solution to reduce fuel consumption in hotel mode operation.•A real-time stochastic PMS is proposed for a hybrid battery/SOFC APU.•The SPSA based PMS achieves a 6% energy saving compared to fuzzy split control.•The new PMS ensures a halved SOFC temperature ramp in 80% of the time. The present paper aims to develop an innovative real-time power management strategy dedicated to the efficient operation of an auxiliary power unit (APU) in a heavy-duty vehicle. Specifically, the APU comprises a Solid Oxide Fuel Cell (SOFC) system and a Lead-Acid battery pack. The power management strategy envisages optimal power sharing between the APU elements and it is defined based on Simultaneous Perturbation Stochastic Approximation (SPSA) principle, pursuing SOFC power profile smoothing in real-time. The SPSA-based algorithm introduced here overcomes real-time operation issues remarked in other implementations (fuzzy logic, genetic algorithms), accounting for a robust and less complex formulation. The power management strategy is implemented in a dynamic model developed in Matlab/Simulink, simulating SOFC-based APU behavior. Simulation outcomes highlight that the proposed strategy allows a global energy saving over 6% if compared to a conventional power management, based on power split control. Moreover, comparing the power profiles corresponding to the battery and the SOFC, it is remarked as SOFC power oscillations evaluated over 1 s timeframe are halved, achieving values lower than 4.5 W/s for more than 80% of the operation time.
doi_str_mv 10.1016/j.enconman.2020.113197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454691787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019689042030741X</els_id><sourcerecordid>2454691787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-14c0236d89c2c5e344043a5909a597ac13f3254858680ca118d1ea9bba73d0823</originalsourceid><addsrcrecordid>eNqFkM1u2zAQhImiAeKmeYWAQM9y-CeJvDUI0rRAgBySnok1tYpoyKJLUm78Bnns0lV67mV3Qcx8xAwhV5ytOePN9XaNkwvTDqa1YKI8cslN-4GsuG5NJYRoP5IV46aptGHqnHxKacsYkzVrVuTtKQc3QMre0X34jZEWDrzgDqdMYb-PAdxA-xAp0OG4ib6jKYxlhlffIe1nHKnDcbzeQM4YjxTmVz96KNeCmyef__oHhMORdnM-0gMO3o144o_eQfZhSp_JWQ9jwsv3fUF-frt7vv1ePTze_7i9eaicVCxXXDkmZNNp44SrUSrFlITaMFNGC47LXopa6Vo3mjngXHccwWw20MqOaSEvyJeFW6L9mjFluw1znMqXVqhaNYa3ui2qZlG5GFKK2Nt99LuSynJmT63brf3Xuj21bpfWi_HrYsSS4eAx2uR8UWLnI7psu-D_h_gDrJSQtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454691787</pqid></control><display><type>article</type><title>Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications</title><source>Elsevier ScienceDirect Journals</source><creator>Barelli, L. ; Bidini, G. ; Ciupăgeanu, D.A. ; Pianese, C. ; Polverino, P. ; Sorrentino, M.</creator><creatorcontrib>Barelli, L. ; Bidini, G. ; Ciupăgeanu, D.A. ; Pianese, C. ; Polverino, P. ; Sorrentino, M.</creatorcontrib><description>•Idling of long haul heavy duty vehicles produces a high fuel consumption.•Hybrid APU represents a solution to reduce fuel consumption in hotel mode operation.•A real-time stochastic PMS is proposed for a hybrid battery/SOFC APU.•The SPSA based PMS achieves a 6% energy saving compared to fuzzy split control.•The new PMS ensures a halved SOFC temperature ramp in 80% of the time. The present paper aims to develop an innovative real-time power management strategy dedicated to the efficient operation of an auxiliary power unit (APU) in a heavy-duty vehicle. Specifically, the APU comprises a Solid Oxide Fuel Cell (SOFC) system and a Lead-Acid battery pack. The power management strategy envisages optimal power sharing between the APU elements and it is defined based on Simultaneous Perturbation Stochastic Approximation (SPSA) principle, pursuing SOFC power profile smoothing in real-time. The SPSA-based algorithm introduced here overcomes real-time operation issues remarked in other implementations (fuzzy logic, genetic algorithms), accounting for a robust and less complex formulation. The power management strategy is implemented in a dynamic model developed in Matlab/Simulink, simulating SOFC-based APU behavior. Simulation outcomes highlight that the proposed strategy allows a global energy saving over 6% if compared to a conventional power management, based on power split control. Moreover, comparing the power profiles corresponding to the battery and the SOFC, it is remarked as SOFC power oscillations evaluated over 1 s timeframe are halved, achieving values lower than 4.5 W/s for more than 80% of the operation time.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.113197</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Auxiliary power units ; Battery ; Dynamic models ; Energy conservation ; Fuel cells ; Fuel technology ; Fuzzy logic ; Genetic algorithms ; Hybrid auxiliary power unit ; Lead acid batteries ; Oscillations ; Perturbation ; Power management ; Power management strategy ; Real time operation ; Simultaneous perturbation stochastic approximation ; Solid oxide fuel cell ; Solid oxide fuel cells ; Strategy</subject><ispartof>Energy conversion and management, 2020-10, Vol.221, p.113197, Article 113197</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-14c0236d89c2c5e344043a5909a597ac13f3254858680ca118d1ea9bba73d0823</citedby><cites>FETCH-LOGICAL-c340t-14c0236d89c2c5e344043a5909a597ac13f3254858680ca118d1ea9bba73d0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S019689042030741X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Barelli, L.</creatorcontrib><creatorcontrib>Bidini, G.</creatorcontrib><creatorcontrib>Ciupăgeanu, D.A.</creatorcontrib><creatorcontrib>Pianese, C.</creatorcontrib><creatorcontrib>Polverino, P.</creatorcontrib><creatorcontrib>Sorrentino, M.</creatorcontrib><title>Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications</title><title>Energy conversion and management</title><description>•Idling of long haul heavy duty vehicles produces a high fuel consumption.•Hybrid APU represents a solution to reduce fuel consumption in hotel mode operation.•A real-time stochastic PMS is proposed for a hybrid battery/SOFC APU.•The SPSA based PMS achieves a 6% energy saving compared to fuzzy split control.•The new PMS ensures a halved SOFC temperature ramp in 80% of the time. The present paper aims to develop an innovative real-time power management strategy dedicated to the efficient operation of an auxiliary power unit (APU) in a heavy-duty vehicle. Specifically, the APU comprises a Solid Oxide Fuel Cell (SOFC) system and a Lead-Acid battery pack. The power management strategy envisages optimal power sharing between the APU elements and it is defined based on Simultaneous Perturbation Stochastic Approximation (SPSA) principle, pursuing SOFC power profile smoothing in real-time. The SPSA-based algorithm introduced here overcomes real-time operation issues remarked in other implementations (fuzzy logic, genetic algorithms), accounting for a robust and less complex formulation. The power management strategy is implemented in a dynamic model developed in Matlab/Simulink, simulating SOFC-based APU behavior. Simulation outcomes highlight that the proposed strategy allows a global energy saving over 6% if compared to a conventional power management, based on power split control. Moreover, comparing the power profiles corresponding to the battery and the SOFC, it is remarked as SOFC power oscillations evaluated over 1 s timeframe are halved, achieving values lower than 4.5 W/s for more than 80% of the operation time.</description><subject>Algorithms</subject><subject>Auxiliary power units</subject><subject>Battery</subject><subject>Dynamic models</subject><subject>Energy conservation</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Hybrid auxiliary power unit</subject><subject>Lead acid batteries</subject><subject>Oscillations</subject><subject>Perturbation</subject><subject>Power management</subject><subject>Power management strategy</subject><subject>Real time operation</subject><subject>Simultaneous perturbation stochastic approximation</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><subject>Strategy</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u2zAQhImiAeKmeYWAQM9y-CeJvDUI0rRAgBySnok1tYpoyKJLUm78Bnns0lV67mV3Qcx8xAwhV5ytOePN9XaNkwvTDqa1YKI8cslN-4GsuG5NJYRoP5IV46aptGHqnHxKacsYkzVrVuTtKQc3QMre0X34jZEWDrzgDqdMYb-PAdxA-xAp0OG4ib6jKYxlhlffIe1nHKnDcbzeQM4YjxTmVz96KNeCmyef__oHhMORdnM-0gMO3o144o_eQfZhSp_JWQ9jwsv3fUF-frt7vv1ePTze_7i9eaicVCxXXDkmZNNp44SrUSrFlITaMFNGC47LXopa6Vo3mjngXHccwWw20MqOaSEvyJeFW6L9mjFluw1znMqXVqhaNYa3ui2qZlG5GFKK2Nt99LuSynJmT63brf3Xuj21bpfWi_HrYsSS4eAx2uR8UWLnI7psu-D_h_gDrJSQtQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Barelli, L.</creator><creator>Bidini, G.</creator><creator>Ciupăgeanu, D.A.</creator><creator>Pianese, C.</creator><creator>Polverino, P.</creator><creator>Sorrentino, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201001</creationdate><title>Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications</title><author>Barelli, L. ; Bidini, G. ; Ciupăgeanu, D.A. ; Pianese, C. ; Polverino, P. ; Sorrentino, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-14c0236d89c2c5e344043a5909a597ac13f3254858680ca118d1ea9bba73d0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Auxiliary power units</topic><topic>Battery</topic><topic>Dynamic models</topic><topic>Energy conservation</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Hybrid auxiliary power unit</topic><topic>Lead acid batteries</topic><topic>Oscillations</topic><topic>Perturbation</topic><topic>Power management</topic><topic>Power management strategy</topic><topic>Real time operation</topic><topic>Simultaneous perturbation stochastic approximation</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barelli, L.</creatorcontrib><creatorcontrib>Bidini, G.</creatorcontrib><creatorcontrib>Ciupăgeanu, D.A.</creatorcontrib><creatorcontrib>Pianese, C.</creatorcontrib><creatorcontrib>Polverino, P.</creatorcontrib><creatorcontrib>Sorrentino, M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barelli, L.</au><au>Bidini, G.</au><au>Ciupăgeanu, D.A.</au><au>Pianese, C.</au><au>Polverino, P.</au><au>Sorrentino, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications</atitle><jtitle>Energy conversion and management</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>221</volume><spage>113197</spage><pages>113197-</pages><artnum>113197</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Idling of long haul heavy duty vehicles produces a high fuel consumption.•Hybrid APU represents a solution to reduce fuel consumption in hotel mode operation.•A real-time stochastic PMS is proposed for a hybrid battery/SOFC APU.•The SPSA based PMS achieves a 6% energy saving compared to fuzzy split control.•The new PMS ensures a halved SOFC temperature ramp in 80% of the time. The present paper aims to develop an innovative real-time power management strategy dedicated to the efficient operation of an auxiliary power unit (APU) in a heavy-duty vehicle. Specifically, the APU comprises a Solid Oxide Fuel Cell (SOFC) system and a Lead-Acid battery pack. The power management strategy envisages optimal power sharing between the APU elements and it is defined based on Simultaneous Perturbation Stochastic Approximation (SPSA) principle, pursuing SOFC power profile smoothing in real-time. The SPSA-based algorithm introduced here overcomes real-time operation issues remarked in other implementations (fuzzy logic, genetic algorithms), accounting for a robust and less complex formulation. The power management strategy is implemented in a dynamic model developed in Matlab/Simulink, simulating SOFC-based APU behavior. Simulation outcomes highlight that the proposed strategy allows a global energy saving over 6% if compared to a conventional power management, based on power split control. Moreover, comparing the power profiles corresponding to the battery and the SOFC, it is remarked as SOFC power oscillations evaluated over 1 s timeframe are halved, achieving values lower than 4.5 W/s for more than 80% of the operation time.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2020.113197</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-10, Vol.221, p.113197, Article 113197
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2454691787
source Elsevier ScienceDirect Journals
subjects Algorithms
Auxiliary power units
Battery
Dynamic models
Energy conservation
Fuel cells
Fuel technology
Fuzzy logic
Genetic algorithms
Hybrid auxiliary power unit
Lead acid batteries
Oscillations
Perturbation
Power management
Power management strategy
Real time operation
Simultaneous perturbation stochastic approximation
Solid oxide fuel cell
Solid oxide fuel cells
Strategy
title Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20power%20management%20approach%20for%20a%20hybrid%20solid%20oxide%20fuel%20cell/battery%20auxiliary%20power%20unit%20for%20heavy%20duty%20vehicle%20applications&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Barelli,%20L.&rft.date=2020-10-01&rft.volume=221&rft.spage=113197&rft.pages=113197-&rft.artnum=113197&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.113197&rft_dat=%3Cproquest_cross%3E2454691787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454691787&rft_id=info:pmid/&rft_els_id=S019689042030741X&rfr_iscdi=true