A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization

Because the deformation of the slope is affected by the stability of the underground structure, natural factors, and human factors, it is difficult for the traditional prediction model of the slope to accurately predict sudden changes. This paper proposes a method to predict the deformation of high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.176112-176121
Hauptverfasser: Fu, Yanhua, Wan, Lushan, Fu, Xiaorui, Xiao, Dong, Mao, Yachun, Sun, Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176121
container_issue
container_start_page 176112
container_title IEEE access
container_volume 8
creator Fu, Yanhua
Wan, Lushan
Fu, Xiaorui
Xiao, Dong
Mao, Yachun
Sun, Xiaoyu
description Because the deformation of the slope is affected by the stability of the underground structure, natural factors, and human factors, it is difficult for the traditional prediction model of the slope to accurately predict sudden changes. This paper proposes a method to predict the deformation of high and steep slopes based on the fuzzy time series and Entire Distribution Optimization. The division of the domain is optimized by the Entire Distribution Optimization, and the deformation of high and steep slopes is predicted by the fuzzy time series. The experimental results show that the fuzzy time series has a good predictive effect on the number of mutations, and the Entire Distribution Optimization avoids the one-sidedness of dividing the domain by mean, which improves the accuracy of the deformation forecasting model of the high and steep slope.
doi_str_mv 10.1109/ACCESS.2020.3027206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454680177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207755</ieee_id><doaj_id>oai_doaj_org_article_a77b3824f7a44cbfb42777671e55f211</doaj_id><sourcerecordid>2454680177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6aaf0d5ba5df5a65adb4b99d41b1192ed2b0bc1bd80b75945176bb004bc13b023</originalsourceid><addsrcrecordid>eNqNkUFv3CAUhK2qlRql-QW5IPVY7RYwGPu4dTZNpFQ5OD0jMI8tq13jAlaU_fVl7SjtsVxAo5l5T3xFcU3wmhDcfN207bbr1hRTvC4xFRRX74oLSqpmVfKyev_P-2NxFeMe51NniYuL4nmDbsD6cFTJ-QHd-gC9iskNO_TDGzggb9Gd2_1CajCoSwAj6g5-BPRNRTDoHJlOpxf05I6AOggO4mzdDskFQDcupuD0NJc_jskd3Wme9Kn4YNUhwtXrfVn8vN0-tXerh8fv9-3mYdWXvE6rSimLDdeKG8tVxZXRTDeNYUQT0lAwVGPdE21qrAVvGCei0hpjlsVSY1peFvdLr_FqL8fgjiq8SK-cnAUfdlKF5PoDSCWELmvKrFCM9dpqRoUQlSDAuaWE5K7PS9cY_O8JYpJ7P4Uhry8p46yqMREiu8rF1QcfYwD7NpVgeQYmF2DyDEy-Asupekk9g_Y29g6GHt6SGRgXHNeMntmR1qX5E1s_DSlHv_x_NLuvF7cD-OtqKBaC8_IP6QGyIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454680177</pqid></control><display><type>article</type><title>A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fu, Yanhua ; Wan, Lushan ; Fu, Xiaorui ; Xiao, Dong ; Mao, Yachun ; Sun, Xiaoyu</creator><creatorcontrib>Fu, Yanhua ; Wan, Lushan ; Fu, Xiaorui ; Xiao, Dong ; Mao, Yachun ; Sun, Xiaoyu</creatorcontrib><description>Because the deformation of the slope is affected by the stability of the underground structure, natural factors, and human factors, it is difficult for the traditional prediction model of the slope to accurately predict sudden changes. This paper proposes a method to predict the deformation of high and steep slopes based on the fuzzy time series and Entire Distribution Optimization. The division of the domain is optimized by the Entire Distribution Optimization, and the deformation of high and steep slopes is predicted by the fuzzy time series. The experimental results show that the fuzzy time series has a good predictive effect on the number of mutations, and the Entire Distribution Optimization avoids the one-sidedness of dividing the domain by mean, which improves the accuracy of the deformation forecasting model of the high and steep slope.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3027206</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Azimuth ; Computer Science ; Computer Science, Information Systems ; Deformation ; Deformation of the slope ; Domains ; Engineering ; Engineering, Electrical &amp; Electronic ; entire distribution optimization ; Forecasting ; fuzzy time series ; Human factors ; Mathematical models ; mine ; Model accuracy ; Mutation ; Optimization ; Prediction models ; Predictive models ; Science &amp; Technology ; Slope stability ; Sociology ; Strain ; Structural stability ; Technology ; Telecommunications ; Time series ; Time series analysis ; Underground structures</subject><ispartof>IEEE access, 2020, Vol.8, p.176112-176121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000575084200001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c358t-6aaf0d5ba5df5a65adb4b99d41b1192ed2b0bc1bd80b75945176bb004bc13b023</cites><orcidid>0000-0003-2589-8593 ; 0000-0002-0401-6654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207755$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Fu, Yanhua</creatorcontrib><creatorcontrib>Wan, Lushan</creatorcontrib><creatorcontrib>Fu, Xiaorui</creatorcontrib><creatorcontrib>Xiao, Dong</creatorcontrib><creatorcontrib>Mao, Yachun</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><title>A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Because the deformation of the slope is affected by the stability of the underground structure, natural factors, and human factors, it is difficult for the traditional prediction model of the slope to accurately predict sudden changes. This paper proposes a method to predict the deformation of high and steep slopes based on the fuzzy time series and Entire Distribution Optimization. The division of the domain is optimized by the Entire Distribution Optimization, and the deformation of high and steep slopes is predicted by the fuzzy time series. The experimental results show that the fuzzy time series has a good predictive effect on the number of mutations, and the Entire Distribution Optimization avoids the one-sidedness of dividing the domain by mean, which improves the accuracy of the deformation forecasting model of the high and steep slope.</description><subject>Azimuth</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Deformation</subject><subject>Deformation of the slope</subject><subject>Domains</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>entire distribution optimization</subject><subject>Forecasting</subject><subject>fuzzy time series</subject><subject>Human factors</subject><subject>Mathematical models</subject><subject>mine</subject><subject>Model accuracy</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Science &amp; Technology</subject><subject>Slope stability</subject><subject>Sociology</subject><subject>Strain</subject><subject>Structural stability</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Underground structures</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUFv3CAUhK2qlRql-QW5IPVY7RYwGPu4dTZNpFQ5OD0jMI8tq13jAlaU_fVl7SjtsVxAo5l5T3xFcU3wmhDcfN207bbr1hRTvC4xFRRX74oLSqpmVfKyev_P-2NxFeMe51NniYuL4nmDbsD6cFTJ-QHd-gC9iskNO_TDGzggb9Gd2_1CajCoSwAj6g5-BPRNRTDoHJlOpxf05I6AOggO4mzdDskFQDcupuD0NJc_jskd3Wme9Kn4YNUhwtXrfVn8vN0-tXerh8fv9-3mYdWXvE6rSimLDdeKG8tVxZXRTDeNYUQT0lAwVGPdE21qrAVvGCei0hpjlsVSY1peFvdLr_FqL8fgjiq8SK-cnAUfdlKF5PoDSCWELmvKrFCM9dpqRoUQlSDAuaWE5K7PS9cY_O8JYpJ7P4Uhry8p46yqMREiu8rF1QcfYwD7NpVgeQYmF2DyDEy-Asupekk9g_Y29g6GHt6SGRgXHNeMntmR1qX5E1s_DSlHv_x_NLuvF7cD-OtqKBaC8_IP6QGyIA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fu, Yanhua</creator><creator>Wan, Lushan</creator><creator>Fu, Xiaorui</creator><creator>Xiao, Dong</creator><creator>Mao, Yachun</creator><creator>Sun, Xiaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2589-8593</orcidid><orcidid>https://orcid.org/0000-0002-0401-6654</orcidid></search><sort><creationdate>2020</creationdate><title>A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization</title><author>Fu, Yanhua ; Wan, Lushan ; Fu, Xiaorui ; Xiao, Dong ; Mao, Yachun ; Sun, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6aaf0d5ba5df5a65adb4b99d41b1192ed2b0bc1bd80b75945176bb004bc13b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Azimuth</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Deformation</topic><topic>Deformation of the slope</topic><topic>Domains</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>entire distribution optimization</topic><topic>Forecasting</topic><topic>fuzzy time series</topic><topic>Human factors</topic><topic>Mathematical models</topic><topic>mine</topic><topic>Model accuracy</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Science &amp; Technology</topic><topic>Slope stability</topic><topic>Sociology</topic><topic>Strain</topic><topic>Structural stability</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Underground structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yanhua</creatorcontrib><creatorcontrib>Wan, Lushan</creatorcontrib><creatorcontrib>Fu, Xiaorui</creatorcontrib><creatorcontrib>Xiao, Dong</creatorcontrib><creatorcontrib>Mao, Yachun</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yanhua</au><au>Wan, Lushan</au><au>Fu, Xiaorui</au><au>Xiao, Dong</au><au>Mao, Yachun</au><au>Sun, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>176112</spage><epage>176121</epage><pages>176112-176121</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Because the deformation of the slope is affected by the stability of the underground structure, natural factors, and human factors, it is difficult for the traditional prediction model of the slope to accurately predict sudden changes. This paper proposes a method to predict the deformation of high and steep slopes based on the fuzzy time series and Entire Distribution Optimization. The division of the domain is optimized by the Entire Distribution Optimization, and the deformation of high and steep slopes is predicted by the fuzzy time series. The experimental results show that the fuzzy time series has a good predictive effect on the number of mutations, and the Entire Distribution Optimization avoids the one-sidedness of dividing the domain by mean, which improves the accuracy of the deformation forecasting model of the high and steep slope.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3027206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2589-8593</orcidid><orcidid>https://orcid.org/0000-0002-0401-6654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.176112-176121
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454680177
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Azimuth
Computer Science
Computer Science, Information Systems
Deformation
Deformation of the slope
Domains
Engineering
Engineering, Electrical & Electronic
entire distribution optimization
Forecasting
fuzzy time series
Human factors
Mathematical models
mine
Model accuracy
Mutation
Optimization
Prediction models
Predictive models
Science & Technology
Slope stability
Sociology
Strain
Structural stability
Technology
Telecommunications
Time series
Time series analysis
Underground structures
title A Deformation Forecasting Model of High and Steep Slope Based on Fuzzy Time Series and Entire Distribution Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deformation%20Forecasting%20Model%20of%20High%20and%20Steep%20Slope%20Based%20on%20Fuzzy%20Time%20Series%20and%20Entire%20Distribution%20Optimization&rft.jtitle=IEEE%20access&rft.au=Fu,%20Yanhua&rft.date=2020&rft.volume=8&rft.spage=176112&rft.epage=176121&rft.pages=176112-176121&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3027206&rft_dat=%3Cproquest_cross%3E2454680177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454680177&rft_id=info:pmid/&rft_ieee_id=9207755&rft_doaj_id=oai_doaj_org_article_a77b3824f7a44cbfb42777671e55f211&rfr_iscdi=true