Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review
The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detectio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.166553-166574 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166574 |
---|---|
container_issue | |
container_start_page | 166553 |
container_title | IEEE access |
container_volume | 8 |
creator | Butt, Umair Muneer Letchmunan, Sukumar Hassan, Fadratul Hafinaz Ali, Mubashir Baqir, Anees Sherazi, Hafiz Husnain Raza |
description | The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications. |
doi_str_mv | 10.1109/ACCESS.2020.3022808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454680088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187772</ieee_id><doaj_id>oai_doaj_org_article_77ba1faff0e44a73bb32f4d712dfa84f</doaj_id><sourcerecordid>2454680088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2f62e5cef852b9a116b58f439ba5ac71be4c7582fc0cb65f5bc0c6d34d26d65c3</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbWQFRf0FXgKeezbfSXsbWncVBhRbvYYkXZEeZiZtOuPivzfaIptLfaTeq0e9qjoneEEIbn4v2_a66xYUU7xgmFKN9UF1TIlsaiaY_PVfflSdTdMal6dLS6jj6rkbbR5i_QjbMSa7QW0atoBuYu7GmNEVZPDlf4fsrkf3Cfrhq7xES9S9Txm2Be3RasiQbN4nQA_wNsC_0-ow2M0EZ9_xpHr6c_3Y3tSru7-37XJVe455rmmQFISHoAV1jSVEOqEDZ42zwnpFHHCvhKbBY--kCMKVRPaM91T2Unh2Ut3OvH20azMW7Ta9m2gH89WI6cXYVBRuwCjlLAk2BAycW8WcYzTwXhHaB6t5KFwXM9eY4usepmzWcZ92Rb6hXHCpy9V0mWLzlE9xmhKEn60Em08_zOyH-fTDfPtRUOczagCAH0RDtFKKsg-1nYdG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454680088</pqid></control><display><type>article</type><title>Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Butt, Umair Muneer ; Letchmunan, Sukumar ; Hassan, Fadratul Hafinaz ; Ali, Mubashir ; Baqir, Anees ; Sherazi, Hafiz Husnain Raza</creator><creatorcontrib>Butt, Umair Muneer ; Letchmunan, Sukumar ; Hassan, Fadratul Hafinaz ; Ali, Mubashir ; Baqir, Anees ; Sherazi, Hafiz Husnain Raza</creatorcontrib><description>The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3022808</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bibliographies ; Clustering ; Crime ; Crime patterns ; Data mining ; Law enforcement ; Literature reviews ; Machine learning ; SLR ; spatio-temporal crime prediction ; spatio-temporal HotSpot detection ; State-of-the-art reviews ; Systematic review ; Systematics ; Time series ; Time series analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.166553-166574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2f62e5cef852b9a116b58f439ba5ac71be4c7582fc0cb65f5bc0c6d34d26d65c3</citedby><cites>FETCH-LOGICAL-c404t-2f62e5cef852b9a116b58f439ba5ac71be4c7582fc0cb65f5bc0c6d34d26d65c3</cites><orcidid>0000-0002-9197-3419 ; 0000-0001-8152-4065 ; 0000-0002-5549-6379 ; 0000-0003-2467-4045 ; 0000-0002-5771-1933 ; 0000-0002-3521-7141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187772$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Butt, Umair Muneer</creatorcontrib><creatorcontrib>Letchmunan, Sukumar</creatorcontrib><creatorcontrib>Hassan, Fadratul Hafinaz</creatorcontrib><creatorcontrib>Ali, Mubashir</creatorcontrib><creatorcontrib>Baqir, Anees</creatorcontrib><creatorcontrib>Sherazi, Hafiz Husnain Raza</creatorcontrib><title>Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications.</description><subject>Bibliographies</subject><subject>Clustering</subject><subject>Crime</subject><subject>Crime patterns</subject><subject>Data mining</subject><subject>Law enforcement</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>SLR</subject><subject>spatio-temporal crime prediction</subject><subject>spatio-temporal HotSpot detection</subject><subject>State-of-the-art reviews</subject><subject>Systematic review</subject><subject>Systematics</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbWQFRf0FXgKeezbfSXsbWncVBhRbvYYkXZEeZiZtOuPivzfaIptLfaTeq0e9qjoneEEIbn4v2_a66xYUU7xgmFKN9UF1TIlsaiaY_PVfflSdTdMal6dLS6jj6rkbbR5i_QjbMSa7QW0atoBuYu7GmNEVZPDlf4fsrkf3Cfrhq7xES9S9Txm2Be3RasiQbN4nQA_wNsC_0-ow2M0EZ9_xpHr6c_3Y3tSru7-37XJVe455rmmQFISHoAV1jSVEOqEDZ42zwnpFHHCvhKbBY--kCMKVRPaM91T2Unh2Ut3OvH20azMW7Ta9m2gH89WI6cXYVBRuwCjlLAk2BAycW8WcYzTwXhHaB6t5KFwXM9eY4usepmzWcZ92Rb6hXHCpy9V0mWLzlE9xmhKEn60Em08_zOyH-fTDfPtRUOczagCAH0RDtFKKsg-1nYdG</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Butt, Umair Muneer</creator><creator>Letchmunan, Sukumar</creator><creator>Hassan, Fadratul Hafinaz</creator><creator>Ali, Mubashir</creator><creator>Baqir, Anees</creator><creator>Sherazi, Hafiz Husnain Raza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9197-3419</orcidid><orcidid>https://orcid.org/0000-0001-8152-4065</orcidid><orcidid>https://orcid.org/0000-0002-5549-6379</orcidid><orcidid>https://orcid.org/0000-0003-2467-4045</orcidid><orcidid>https://orcid.org/0000-0002-5771-1933</orcidid><orcidid>https://orcid.org/0000-0002-3521-7141</orcidid></search><sort><creationdate>2020</creationdate><title>Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review</title><author>Butt, Umair Muneer ; Letchmunan, Sukumar ; Hassan, Fadratul Hafinaz ; Ali, Mubashir ; Baqir, Anees ; Sherazi, Hafiz Husnain Raza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2f62e5cef852b9a116b58f439ba5ac71be4c7582fc0cb65f5bc0c6d34d26d65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bibliographies</topic><topic>Clustering</topic><topic>Crime</topic><topic>Crime patterns</topic><topic>Data mining</topic><topic>Law enforcement</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>SLR</topic><topic>spatio-temporal crime prediction</topic><topic>spatio-temporal HotSpot detection</topic><topic>State-of-the-art reviews</topic><topic>Systematic review</topic><topic>Systematics</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, Umair Muneer</creatorcontrib><creatorcontrib>Letchmunan, Sukumar</creatorcontrib><creatorcontrib>Hassan, Fadratul Hafinaz</creatorcontrib><creatorcontrib>Ali, Mubashir</creatorcontrib><creatorcontrib>Baqir, Anees</creatorcontrib><creatorcontrib>Sherazi, Hafiz Husnain Raza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, Umair Muneer</au><au>Letchmunan, Sukumar</au><au>Hassan, Fadratul Hafinaz</au><au>Ali, Mubashir</au><au>Baqir, Anees</au><au>Sherazi, Hafiz Husnain Raza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>166553</spage><epage>166574</epage><pages>166553-166574</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3022808</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9197-3419</orcidid><orcidid>https://orcid.org/0000-0001-8152-4065</orcidid><orcidid>https://orcid.org/0000-0002-5549-6379</orcidid><orcidid>https://orcid.org/0000-0003-2467-4045</orcidid><orcidid>https://orcid.org/0000-0002-5771-1933</orcidid><orcidid>https://orcid.org/0000-0002-3521-7141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.166553-166574 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454680088 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bibliographies Clustering Crime Crime patterns Data mining Law enforcement Literature reviews Machine learning SLR spatio-temporal crime prediction spatio-temporal HotSpot detection State-of-the-art reviews Systematic review Systematics Time series Time series analysis |
title | Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Crime%20HotSpot%20Detection%20and%20Prediction:%20A%20Systematic%20Literature%20Review&rft.jtitle=IEEE%20access&rft.au=Butt,%20Umair%20Muneer&rft.date=2020&rft.volume=8&rft.spage=166553&rft.epage=166574&rft.pages=166553-166574&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3022808&rft_dat=%3Cproquest_cross%3E2454680088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454680088&rft_id=info:pmid/&rft_ieee_id=9187772&rft_doaj_id=oai_doaj_org_article_77ba1faff0e44a73bb32f4d712dfa84f&rfr_iscdi=true |