Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach
Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.175871-175880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175880 |
---|---|
container_issue | |
container_start_page | 175871 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Gangqiang Xie, Sen Wang, Bozhong Xin, Jiantao Li, Yunfeng Du, Shengnan |
description | Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems. |
doi_str_mv | 10.1109/ACCESS.2020.3025860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454680051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9203843</ieee_id><doaj_id>oai_doaj_org_article_e2c6051a806e400eaf601e78e7108be2</doaj_id><sourcerecordid>2454680051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</originalsourceid><addsrcrecordid>eNpNUN9rwjAQLmODifMv8KWwZ90ladL0UTqdgjDBjT2GNL1oxZkurRv-94uryO7lfn7f3X1RNCQwJgSyp0meT9frMQUKYwaUSwE3UY8SkY0YZ-L2X3wfDZpmB8FkKPG0F-WrrWvdt9u3ujLxyv2gj2fOo9FNWx028UfVbmMdz0-Fr8r4GbGOl6j94dyb1LV32mwfojur9w0OLr4fvc-mb_l8tHx9WeST5cgkINsRFURm3GZoU15yI2xmGCmJTEsSEp6hkMwWVKMxqRSIOg0xFMaQjNjUWNaPFh1v6fRO1b761P6knK7UX8H5jdK-rcweFVIjgBMtQWACgNoKIJhKTAnIAmngeuy4wgtfR2xatXNHfwjnK5rwREgI8DDFuinjXdN4tNetBNRZfNWJr87iq4v4ATXsUBUiXhEZBSYTxn4B2Ct_Xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454680051</pqid></control><display><type>article</type><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</creator><creatorcontrib>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</creatorcontrib><description>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3025860</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Clean energy ; Deep learning ; Economic forecasting ; Electric power systems ; Energy sources ; Forecasting ; Hybrid power systems ; Mathematical models ; Meteorology ; Neural networks ; photovoltaic (PV) power forecasting ; Photovoltaic cells ; Photovoltaic systems ; power systems ; Predictive models ; Recurrent neural networks ; Resource management ; Smart grid ; Solar energy</subject><ispartof>IEEE access, 2020, Vol.8, p.175871-175880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</citedby><cites>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</cites><orcidid>0000-0002-4074-3998 ; 0000-0002-7363-1060 ; 0000-0001-5288-6390 ; 0000-0002-0307-828X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9203843$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Gangqiang</creatorcontrib><creatorcontrib>Xie, Sen</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><creatorcontrib>Xin, Jiantao</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Du, Shengnan</creatorcontrib><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</description><subject>Artificial neural networks</subject><subject>Clean energy</subject><subject>Deep learning</subject><subject>Economic forecasting</subject><subject>Electric power systems</subject><subject>Energy sources</subject><subject>Forecasting</subject><subject>Hybrid power systems</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>photovoltaic (PV) power forecasting</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>power systems</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Resource management</subject><subject>Smart grid</subject><subject>Solar energy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUN9rwjAQLmODifMv8KWwZ90ladL0UTqdgjDBjT2GNL1oxZkurRv-94uryO7lfn7f3X1RNCQwJgSyp0meT9frMQUKYwaUSwE3UY8SkY0YZ-L2X3wfDZpmB8FkKPG0F-WrrWvdt9u3ujLxyv2gj2fOo9FNWx028UfVbmMdz0-Fr8r4GbGOl6j94dyb1LV32mwfojur9w0OLr4fvc-mb_l8tHx9WeST5cgkINsRFURm3GZoU15yI2xmGCmJTEsSEp6hkMwWVKMxqRSIOg0xFMaQjNjUWNaPFh1v6fRO1b761P6knK7UX8H5jdK-rcweFVIjgBMtQWACgNoKIJhKTAnIAmngeuy4wgtfR2xatXNHfwjnK5rwREgI8DDFuinjXdN4tNetBNRZfNWJr87iq4v4ATXsUBUiXhEZBSYTxn4B2Ct_Xw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Gangqiang</creator><creator>Xie, Sen</creator><creator>Wang, Bozhong</creator><creator>Xin, Jiantao</creator><creator>Li, Yunfeng</creator><creator>Du, Shengnan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4074-3998</orcidid><orcidid>https://orcid.org/0000-0002-7363-1060</orcidid><orcidid>https://orcid.org/0000-0001-5288-6390</orcidid><orcidid>https://orcid.org/0000-0002-0307-828X</orcidid></search><sort><creationdate>2020</creationdate><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><author>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Clean energy</topic><topic>Deep learning</topic><topic>Economic forecasting</topic><topic>Electric power systems</topic><topic>Energy sources</topic><topic>Forecasting</topic><topic>Hybrid power systems</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>photovoltaic (PV) power forecasting</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>power systems</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Resource management</topic><topic>Smart grid</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gangqiang</creatorcontrib><creatorcontrib>Xie, Sen</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><creatorcontrib>Xin, Jiantao</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Du, Shengnan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gangqiang</au><au>Xie, Sen</au><au>Wang, Bozhong</au><au>Xin, Jiantao</au><au>Li, Yunfeng</au><au>Du, Shengnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>175871</spage><epage>175880</epage><pages>175871-175880</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3025860</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4074-3998</orcidid><orcidid>https://orcid.org/0000-0002-7363-1060</orcidid><orcidid>https://orcid.org/0000-0001-5288-6390</orcidid><orcidid>https://orcid.org/0000-0002-0307-828X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.175871-175880 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454680051 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Clean energy Deep learning Economic forecasting Electric power systems Energy sources Forecasting Hybrid power systems Mathematical models Meteorology Neural networks photovoltaic (PV) power forecasting Photovoltaic cells Photovoltaic systems power systems Predictive models Recurrent neural networks Resource management Smart grid Solar energy |
title | Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20Power%20Forecasting%20With%20a%20Hybrid%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20access&rft.au=Li,%20Gangqiang&rft.date=2020&rft.volume=8&rft.spage=175871&rft.epage=175880&rft.pages=175871-175880&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3025860&rft_dat=%3Cproquest_cross%3E2454680051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454680051&rft_id=info:pmid/&rft_ieee_id=9203843&rft_doaj_id=oai_doaj_org_article_e2c6051a806e400eaf601e78e7108be2&rfr_iscdi=true |