Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach

Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.175871-175880
Hauptverfasser: Li, Gangqiang, Xie, Sen, Wang, Bozhong, Xin, Jiantao, Li, Yunfeng, Du, Shengnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175880
container_issue
container_start_page 175871
container_title IEEE access
container_volume 8
creator Li, Gangqiang
Xie, Sen
Wang, Bozhong
Xin, Jiantao
Li, Yunfeng
Du, Shengnan
description Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.
doi_str_mv 10.1109/ACCESS.2020.3025860
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454680051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9203843</ieee_id><doaj_id>oai_doaj_org_article_e2c6051a806e400eaf601e78e7108be2</doaj_id><sourcerecordid>2454680051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</originalsourceid><addsrcrecordid>eNpNUN9rwjAQLmODifMv8KWwZ90ladL0UTqdgjDBjT2GNL1oxZkurRv-94uryO7lfn7f3X1RNCQwJgSyp0meT9frMQUKYwaUSwE3UY8SkY0YZ-L2X3wfDZpmB8FkKPG0F-WrrWvdt9u3ujLxyv2gj2fOo9FNWx028UfVbmMdz0-Fr8r4GbGOl6j94dyb1LV32mwfojur9w0OLr4fvc-mb_l8tHx9WeST5cgkINsRFURm3GZoU15yI2xmGCmJTEsSEp6hkMwWVKMxqRSIOg0xFMaQjNjUWNaPFh1v6fRO1b761P6knK7UX8H5jdK-rcweFVIjgBMtQWACgNoKIJhKTAnIAmngeuy4wgtfR2xatXNHfwjnK5rwREgI8DDFuinjXdN4tNetBNRZfNWJr87iq4v4ATXsUBUiXhEZBSYTxn4B2Ct_Xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454680051</pqid></control><display><type>article</type><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</creator><creatorcontrib>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</creatorcontrib><description>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3025860</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Clean energy ; Deep learning ; Economic forecasting ; Electric power systems ; Energy sources ; Forecasting ; Hybrid power systems ; Mathematical models ; Meteorology ; Neural networks ; photovoltaic (PV) power forecasting ; Photovoltaic cells ; Photovoltaic systems ; power systems ; Predictive models ; Recurrent neural networks ; Resource management ; Smart grid ; Solar energy</subject><ispartof>IEEE access, 2020, Vol.8, p.175871-175880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</citedby><cites>FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</cites><orcidid>0000-0002-4074-3998 ; 0000-0002-7363-1060 ; 0000-0001-5288-6390 ; 0000-0002-0307-828X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9203843$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Gangqiang</creatorcontrib><creatorcontrib>Xie, Sen</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><creatorcontrib>Xin, Jiantao</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Du, Shengnan</creatorcontrib><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</description><subject>Artificial neural networks</subject><subject>Clean energy</subject><subject>Deep learning</subject><subject>Economic forecasting</subject><subject>Electric power systems</subject><subject>Energy sources</subject><subject>Forecasting</subject><subject>Hybrid power systems</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>photovoltaic (PV) power forecasting</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>power systems</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Resource management</subject><subject>Smart grid</subject><subject>Solar energy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUN9rwjAQLmODifMv8KWwZ90ladL0UTqdgjDBjT2GNL1oxZkurRv-94uryO7lfn7f3X1RNCQwJgSyp0meT9frMQUKYwaUSwE3UY8SkY0YZ-L2X3wfDZpmB8FkKPG0F-WrrWvdt9u3ujLxyv2gj2fOo9FNWx028UfVbmMdz0-Fr8r4GbGOl6j94dyb1LV32mwfojur9w0OLr4fvc-mb_l8tHx9WeST5cgkINsRFURm3GZoU15yI2xmGCmJTEsSEp6hkMwWVKMxqRSIOg0xFMaQjNjUWNaPFh1v6fRO1b761P6knK7UX8H5jdK-rcweFVIjgBMtQWACgNoKIJhKTAnIAmngeuy4wgtfR2xatXNHfwjnK5rwREgI8DDFuinjXdN4tNetBNRZfNWJr87iq4v4ATXsUBUiXhEZBSYTxn4B2Ct_Xw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Gangqiang</creator><creator>Xie, Sen</creator><creator>Wang, Bozhong</creator><creator>Xin, Jiantao</creator><creator>Li, Yunfeng</creator><creator>Du, Shengnan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4074-3998</orcidid><orcidid>https://orcid.org/0000-0002-7363-1060</orcidid><orcidid>https://orcid.org/0000-0001-5288-6390</orcidid><orcidid>https://orcid.org/0000-0002-0307-828X</orcidid></search><sort><creationdate>2020</creationdate><title>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</title><author>Li, Gangqiang ; Xie, Sen ; Wang, Bozhong ; Xin, Jiantao ; Li, Yunfeng ; Du, Shengnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-261895f9ef75d5c6f9c31d187d1c6f59e683fb2aecc786eea72ae0bcc191f7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Clean energy</topic><topic>Deep learning</topic><topic>Economic forecasting</topic><topic>Electric power systems</topic><topic>Energy sources</topic><topic>Forecasting</topic><topic>Hybrid power systems</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>photovoltaic (PV) power forecasting</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>power systems</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Resource management</topic><topic>Smart grid</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gangqiang</creatorcontrib><creatorcontrib>Xie, Sen</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><creatorcontrib>Xin, Jiantao</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Du, Shengnan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gangqiang</au><au>Xie, Sen</au><au>Wang, Bozhong</au><au>Xin, Jiantao</au><au>Li, Yunfeng</au><au>Du, Shengnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>175871</spage><epage>175880</epage><pages>175871-175880</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Solar energy is the key to clean energy, which can generate large amounts of electricity for the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring difficulties to the stable operation and management of the power systems. To reduce the negative impact of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power forecasting. The CNN model is leveraged to discover the nonlinear features and invariant structures exhibited in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used to model the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction results in the two models are comprehensively considered to obtain the expected output power. The proposed approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate that the proposed approach can provide good prediction performance in PV systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3025860</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4074-3998</orcidid><orcidid>https://orcid.org/0000-0002-7363-1060</orcidid><orcidid>https://orcid.org/0000-0001-5288-6390</orcidid><orcidid>https://orcid.org/0000-0002-0307-828X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.175871-175880
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454680051
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Clean energy
Deep learning
Economic forecasting
Electric power systems
Energy sources
Forecasting
Hybrid power systems
Mathematical models
Meteorology
Neural networks
photovoltaic (PV) power forecasting
Photovoltaic cells
Photovoltaic systems
power systems
Predictive models
Recurrent neural networks
Resource management
Smart grid
Solar energy
title Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20Power%20Forecasting%20With%20a%20Hybrid%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20access&rft.au=Li,%20Gangqiang&rft.date=2020&rft.volume=8&rft.spage=175871&rft.epage=175880&rft.pages=175871-175880&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3025860&rft_dat=%3Cproquest_cross%3E2454680051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454680051&rft_id=info:pmid/&rft_ieee_id=9203843&rft_doaj_id=oai_doaj_org_article_e2c6051a806e400eaf601e78e7108be2&rfr_iscdi=true