U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection

Diabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis. In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.167225-167235
Hauptverfasser: Zong, Yongshuo, Chen, Jinling, Yang, Lvqing, Tao, Siyi, Aoma, Cieryouzhen, Zhao, Jiangsheng, Wang, Shuihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167235
container_issue
container_start_page 167225
container_title IEEE access
container_volume 8
creator Zong, Yongshuo
Chen, Jinling
Yang, Lvqing
Tao, Siyi
Aoma, Cieryouzhen
Zhao, Jiangsheng
Wang, Shuihua
description Diabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis. In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmologists to diagnose DR in the early stage. We utilized the SLIC superpixel algorithm to generate sample patches, thus overcoming the difficulty of the limited and imbalanced dataset. Furthermore, a U-net based network architecture with inception modules and residual connections is proposed to conduct end-to-end hard exudate segmentation, and focal loss is utilized as the loss function. Extensive experiments have been conducted on the IDRiD dataset to evaluate the performance of the proposed method. The reported sensitivity, specificity, and accuracy achieve 96.38%, 97.14%, and 97.95% respectively, which demonstrates the effectiveness and superiority of our method. The achieved segmentation results prove the potential of the method for clinical diagnosis.
doi_str_mv 10.1109/ACCESS.2020.3023273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454678472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9194249</ieee_id><doaj_id>oai_doaj_org_article_11af494d5ec74a838a21b10749a4247c</doaj_id><sourcerecordid>2454678472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d182be5512f058d521c9d45e79709e34bdd29b3c3a2fc8e444cb9cd46267afa83</originalsourceid><addsrcrecordid>eNpNUd1r2zAQN2OFlbZ_QV8EfXamL1vWY2bSNdAyWJpncZbOqUMiZZING_3nq9SlTC8n7vdxd_yK4pbRBWNUf1-27WqzWXDK6UJQLrgSX4pLzmpdikrUX__7fytuUtrT_JrcqtRl8botPY7kByR05AnHl-BIHyJZTmM4wjhY8gDRkdXfycGIiWxwd0Q_ZiR4MnhyP3k3JbI-wi6j2zT4HVl7i6d3wlNw0wEJeEd-YxrcBAfSBu_RnuHr4qKHQ8Kbj3pVbO9Xz-1D-fjr57pdPpZW0mYsHWt4h1XFeE-rxlWcWe1khUorqlHIzjmuO2EF8N42KKW0nbZO1rxW0EMjror17OsC7M0pDkeI_0yAwbw3QtwZiPnUAxrGoJdaugqtklnaAGcdo0pqkFwqm73uZq9TDH8mTKPZhyn6vL7hspK1aqTimSVmlo0hpYj951RGzTk0M4dmzqGZj9Cy6nZWDYj4qdBM59FavAFsb5LG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678472</pqid></control><display><type>article</type><title>U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Zong, Yongshuo ; Chen, Jinling ; Yang, Lvqing ; Tao, Siyi ; Aoma, Cieryouzhen ; Zhao, Jiangsheng ; Wang, Shuihua</creator><creatorcontrib>Zong, Yongshuo ; Chen, Jinling ; Yang, Lvqing ; Tao, Siyi ; Aoma, Cieryouzhen ; Zhao, Jiangsheng ; Wang, Shuihua</creatorcontrib><description>Diabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis. In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmologists to diagnose DR in the early stage. We utilized the SLIC superpixel algorithm to generate sample patches, thus overcoming the difficulty of the limited and imbalanced dataset. Furthermore, a U-net based network architecture with inception modules and residual connections is proposed to conduct end-to-end hard exudate segmentation, and focal loss is utilized as the loss function. Extensive experiments have been conducted on the IDRiD dataset to evaluate the performance of the proposed method. The reported sensitivity, specificity, and accuracy achieve 96.38%, 97.14%, and 97.95% respectively, which demonstrates the effectiveness and superiority of our method. The achieved segmentation results prove the potential of the method for clinical diagnosis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3023273</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Classification algorithms ; Computer architecture ; Datasets ; Deep learning ; Diabetes ; Diabetic retinopathy ; Diagnosis ; exudates segmentation ; Exudation ; Feature extraction ; Image color analysis ; Image segmentation ; Machine learning ; Modules ; superpixel ; U-net</subject><ispartof>IEEE access, 2020, Vol.8, p.167225-167235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d182be5512f058d521c9d45e79709e34bdd29b3c3a2fc8e444cb9cd46267afa83</citedby><cites>FETCH-LOGICAL-c408t-d182be5512f058d521c9d45e79709e34bdd29b3c3a2fc8e444cb9cd46267afa83</cites><orcidid>0000-0003-2238-6808 ; 0000-0002-3267-753X ; 0000-0002-3245-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9194249$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zong, Yongshuo</creatorcontrib><creatorcontrib>Chen, Jinling</creatorcontrib><creatorcontrib>Yang, Lvqing</creatorcontrib><creatorcontrib>Tao, Siyi</creatorcontrib><creatorcontrib>Aoma, Cieryouzhen</creatorcontrib><creatorcontrib>Zhao, Jiangsheng</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><title>U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Diabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis. In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmologists to diagnose DR in the early stage. We utilized the SLIC superpixel algorithm to generate sample patches, thus overcoming the difficulty of the limited and imbalanced dataset. Furthermore, a U-net based network architecture with inception modules and residual connections is proposed to conduct end-to-end hard exudate segmentation, and focal loss is utilized as the loss function. Extensive experiments have been conducted on the IDRiD dataset to evaluate the performance of the proposed method. The reported sensitivity, specificity, and accuracy achieve 96.38%, 97.14%, and 97.95% respectively, which demonstrates the effectiveness and superiority of our method. The achieved segmentation results prove the potential of the method for clinical diagnosis.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Classification algorithms</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>exudates segmentation</subject><subject>Exudation</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Modules</subject><subject>superpixel</subject><subject>U-net</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd1r2zAQN2OFlbZ_QV8EfXamL1vWY2bSNdAyWJpncZbOqUMiZZING_3nq9SlTC8n7vdxd_yK4pbRBWNUf1-27WqzWXDK6UJQLrgSX4pLzmpdikrUX__7fytuUtrT_JrcqtRl8botPY7kByR05AnHl-BIHyJZTmM4wjhY8gDRkdXfycGIiWxwd0Q_ZiR4MnhyP3k3JbI-wi6j2zT4HVl7i6d3wlNw0wEJeEd-YxrcBAfSBu_RnuHr4qKHQ8Kbj3pVbO9Xz-1D-fjr57pdPpZW0mYsHWt4h1XFeE-rxlWcWe1khUorqlHIzjmuO2EF8N42KKW0nbZO1rxW0EMjror17OsC7M0pDkeI_0yAwbw3QtwZiPnUAxrGoJdaugqtklnaAGcdo0pqkFwqm73uZq9TDH8mTKPZhyn6vL7hspK1aqTimSVmlo0hpYj951RGzTk0M4dmzqGZj9Cy6nZWDYj4qdBM59FavAFsb5LG</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zong, Yongshuo</creator><creator>Chen, Jinling</creator><creator>Yang, Lvqing</creator><creator>Tao, Siyi</creator><creator>Aoma, Cieryouzhen</creator><creator>Zhao, Jiangsheng</creator><creator>Wang, Shuihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2238-6808</orcidid><orcidid>https://orcid.org/0000-0002-3267-753X</orcidid><orcidid>https://orcid.org/0000-0002-3245-2613</orcidid></search><sort><creationdate>2020</creationdate><title>U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection</title><author>Zong, Yongshuo ; Chen, Jinling ; Yang, Lvqing ; Tao, Siyi ; Aoma, Cieryouzhen ; Zhao, Jiangsheng ; Wang, Shuihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d182be5512f058d521c9d45e79709e34bdd29b3c3a2fc8e444cb9cd46267afa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Classification algorithms</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>exudates segmentation</topic><topic>Exudation</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Modules</topic><topic>superpixel</topic><topic>U-net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Yongshuo</creatorcontrib><creatorcontrib>Chen, Jinling</creatorcontrib><creatorcontrib>Yang, Lvqing</creatorcontrib><creatorcontrib>Tao, Siyi</creatorcontrib><creatorcontrib>Aoma, Cieryouzhen</creatorcontrib><creatorcontrib>Zhao, Jiangsheng</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zong, Yongshuo</au><au>Chen, Jinling</au><au>Yang, Lvqing</au><au>Tao, Siyi</au><au>Aoma, Cieryouzhen</au><au>Zhao, Jiangsheng</au><au>Wang, Shuihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>167225</spage><epage>167235</epage><pages>167225-167235</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Diabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis. In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmologists to diagnose DR in the early stage. We utilized the SLIC superpixel algorithm to generate sample patches, thus overcoming the difficulty of the limited and imbalanced dataset. Furthermore, a U-net based network architecture with inception modules and residual connections is proposed to conduct end-to-end hard exudate segmentation, and focal loss is utilized as the loss function. Extensive experiments have been conducted on the IDRiD dataset to evaluate the performance of the proposed method. The reported sensitivity, specificity, and accuracy achieve 96.38%, 97.14%, and 97.95% respectively, which demonstrates the effectiveness and superiority of our method. The achieved segmentation results prove the potential of the method for clinical diagnosis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3023273</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2238-6808</orcidid><orcidid>https://orcid.org/0000-0002-3267-753X</orcidid><orcidid>https://orcid.org/0000-0002-3245-2613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.167225-167235
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454678472
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Biomedical imaging
Classification algorithms
Computer architecture
Datasets
Deep learning
Diabetes
Diabetic retinopathy
Diagnosis
exudates segmentation
Exudation
Feature extraction
Image color analysis
Image segmentation
Machine learning
Modules
superpixel
U-net
title U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U-net%20Based%20Method%20for%20Automatic%20Hard%20Exudates%20Segmentation%20in%20Fundus%20Images%20Using%20Inception%20Module%20and%20Residual%20Connection&rft.jtitle=IEEE%20access&rft.au=Zong,%20Yongshuo&rft.date=2020&rft.volume=8&rft.spage=167225&rft.epage=167235&rft.pages=167225-167235&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3023273&rft_dat=%3Cproquest_cross%3E2454678472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678472&rft_id=info:pmid/&rft_ieee_id=9194249&rft_doaj_id=oai_doaj_org_article_11af494d5ec74a838a21b10749a4247c&rfr_iscdi=true