Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas
The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Ca...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.181640-181649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181649 |
---|---|
container_issue | |
container_start_page | 181640 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhang, Hao Lopez-Dekker, Paco Li, Shaoning |
description | The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation. |
doi_str_mv | 10.1109/ACCESS.2020.3028491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454678385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9211411</ieee_id><doaj_id>oai_doaj_org_article_c2b4cba9d0c7448ca8af5cadfd6b2e5a</doaj_id><sourcerecordid>2454678385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</originalsourceid><addsrcrecordid>eNpNkV1LwzAUhosoKOov8KbgdWc-u-RyFD8GguL01nCanEjG1sykvfDf260yzE3Cw3neQ3iL4oaSGaVE3y2a5n61mjHCyIwTpoSmJ8UFo7WuuOT16b_3eXGd85qMR41Izi-KzyZu29BBH2JXRl-uhh2m6g1z3AwH9rpaltC58j2BC3sCmwNrf8qlw64PPtij_RS38Qs7jEMuFwkhXxVnHjYZr__uy-Lj4f69eaqeXx6XzeK5soKovqoptVJwpRgoTSxh0qKTRCuUTihZEwHeotCaSydrxSixwnM6d4hejAP8slhOuS7C2uxS2EL6MRGCOYCYvgykPtgNGstaYVvQjtj56FpQ4KUF513dMpQwZt1OWbsUvwfMvVnHIY3_zoYJKeq54oeNfJqyKeac0B-3UmL2vZipF7Pvxfz1Mlo3kxUQ8WhoRqmglP8CEj6I0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678385</pqid></control><display><type>article</type><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</creator><creatorcontrib>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</creatorcontrib><description>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coefficient of variation ; Deformation effects ; Density ; Estimation ; Gaussian distribution ; Grasslands ; Homogeneous area ; PSI ; Reprocessing ; SAR ; Spatial resolution ; Strain ; super-resolution ; Urban areas</subject><ispartof>IEEE access, 2020, Vol.8, p.181640-181649</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</citedby><cites>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</cites><orcidid>0000-0002-0221-4403 ; 0000-0001-7089-8344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9211411$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Lopez-Dekker, Paco</creatorcontrib><creatorcontrib>Li, Shaoning</creatorcontrib><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</description><subject>Algorithms</subject><subject>Coefficient of variation</subject><subject>Deformation effects</subject><subject>Density</subject><subject>Estimation</subject><subject>Gaussian distribution</subject><subject>Grasslands</subject><subject>Homogeneous area</subject><subject>PSI</subject><subject>Reprocessing</subject><subject>SAR</subject><subject>Spatial resolution</subject><subject>Strain</subject><subject>super-resolution</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAUhosoKOov8KbgdWc-u-RyFD8GguL01nCanEjG1sykvfDf260yzE3Cw3neQ3iL4oaSGaVE3y2a5n61mjHCyIwTpoSmJ8UFo7WuuOT16b_3eXGd85qMR41Izi-KzyZu29BBH2JXRl-uhh2m6g1z3AwH9rpaltC58j2BC3sCmwNrf8qlw64PPtij_RS38Qs7jEMuFwkhXxVnHjYZr__uy-Lj4f69eaqeXx6XzeK5soKovqoptVJwpRgoTSxh0qKTRCuUTihZEwHeotCaSydrxSixwnM6d4hejAP8slhOuS7C2uxS2EL6MRGCOYCYvgykPtgNGstaYVvQjtj56FpQ4KUF513dMpQwZt1OWbsUvwfMvVnHIY3_zoYJKeq54oeNfJqyKeac0B-3UmL2vZipF7Pvxfz1Mlo3kxUQ8WhoRqmglP8CEj6I0A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Hao</creator><creator>Lopez-Dekker, Paco</creator><creator>Li, Shaoning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0221-4403</orcidid><orcidid>https://orcid.org/0000-0001-7089-8344</orcidid></search><sort><creationdate>2020</creationdate><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><author>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Coefficient of variation</topic><topic>Deformation effects</topic><topic>Density</topic><topic>Estimation</topic><topic>Gaussian distribution</topic><topic>Grasslands</topic><topic>Homogeneous area</topic><topic>PSI</topic><topic>Reprocessing</topic><topic>SAR</topic><topic>Spatial resolution</topic><topic>Strain</topic><topic>super-resolution</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Lopez-Dekker, Paco</creatorcontrib><creatorcontrib>Li, Shaoning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Lopez-Dekker, Paco</au><au>Li, Shaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>181640</spage><epage>181649</epage><pages>181640-181649</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028491</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0221-4403</orcidid><orcidid>https://orcid.org/0000-0001-7089-8344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.181640-181649 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454678385 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Coefficient of variation Deformation effects Density Estimation Gaussian distribution Grasslands Homogeneous area PSI Reprocessing SAR Spatial resolution Strain super-resolution Urban areas |
title | Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Super-Resolution%20PSI%20and%20Traditional%20PSI%20by%20Identification%20of%20Homogeneous%20Areas&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Hao&rft.date=2020&rft.volume=8&rft.spage=181640&rft.epage=181649&rft.pages=181640-181649&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028491&rft_dat=%3Cproquest_doaj_%3E2454678385%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678385&rft_id=info:pmid/&rft_ieee_id=9211411&rft_doaj_id=oai_doaj_org_article_c2b4cba9d0c7448ca8af5cadfd6b2e5a&rfr_iscdi=true |