Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas

The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.181640-181649
Hauptverfasser: Zhang, Hao, Lopez-Dekker, Paco, Li, Shaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181649
container_issue
container_start_page 181640
container_title IEEE access
container_volume 8
creator Zhang, Hao
Lopez-Dekker, Paco
Li, Shaoning
description The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.
doi_str_mv 10.1109/ACCESS.2020.3028491
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454678385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9211411</ieee_id><doaj_id>oai_doaj_org_article_c2b4cba9d0c7448ca8af5cadfd6b2e5a</doaj_id><sourcerecordid>2454678385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</originalsourceid><addsrcrecordid>eNpNkV1LwzAUhosoKOov8KbgdWc-u-RyFD8GguL01nCanEjG1sykvfDf260yzE3Cw3neQ3iL4oaSGaVE3y2a5n61mjHCyIwTpoSmJ8UFo7WuuOT16b_3eXGd85qMR41Izi-KzyZu29BBH2JXRl-uhh2m6g1z3AwH9rpaltC58j2BC3sCmwNrf8qlw64PPtij_RS38Qs7jEMuFwkhXxVnHjYZr__uy-Lj4f69eaqeXx6XzeK5soKovqoptVJwpRgoTSxh0qKTRCuUTihZEwHeotCaSydrxSixwnM6d4hejAP8slhOuS7C2uxS2EL6MRGCOYCYvgykPtgNGstaYVvQjtj56FpQ4KUF513dMpQwZt1OWbsUvwfMvVnHIY3_zoYJKeq54oeNfJqyKeac0B-3UmL2vZipF7Pvxfz1Mlo3kxUQ8WhoRqmglP8CEj6I0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678385</pqid></control><display><type>article</type><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</creator><creatorcontrib>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</creatorcontrib><description>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coefficient of variation ; Deformation effects ; Density ; Estimation ; Gaussian distribution ; Grasslands ; Homogeneous area ; PSI ; Reprocessing ; SAR ; Spatial resolution ; Strain ; super-resolution ; Urban areas</subject><ispartof>IEEE access, 2020, Vol.8, p.181640-181649</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</citedby><cites>FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</cites><orcidid>0000-0002-0221-4403 ; 0000-0001-7089-8344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9211411$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Lopez-Dekker, Paco</creatorcontrib><creatorcontrib>Li, Shaoning</creatorcontrib><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><title>IEEE access</title><addtitle>Access</addtitle><description>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</description><subject>Algorithms</subject><subject>Coefficient of variation</subject><subject>Deformation effects</subject><subject>Density</subject><subject>Estimation</subject><subject>Gaussian distribution</subject><subject>Grasslands</subject><subject>Homogeneous area</subject><subject>PSI</subject><subject>Reprocessing</subject><subject>SAR</subject><subject>Spatial resolution</subject><subject>Strain</subject><subject>super-resolution</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAUhosoKOov8KbgdWc-u-RyFD8GguL01nCanEjG1sykvfDf260yzE3Cw3neQ3iL4oaSGaVE3y2a5n61mjHCyIwTpoSmJ8UFo7WuuOT16b_3eXGd85qMR41Izi-KzyZu29BBH2JXRl-uhh2m6g1z3AwH9rpaltC58j2BC3sCmwNrf8qlw64PPtij_RS38Qs7jEMuFwkhXxVnHjYZr__uy-Lj4f69eaqeXx6XzeK5soKovqoptVJwpRgoTSxh0qKTRCuUTihZEwHeotCaSydrxSixwnM6d4hejAP8slhOuS7C2uxS2EL6MRGCOYCYvgykPtgNGstaYVvQjtj56FpQ4KUF513dMpQwZt1OWbsUvwfMvVnHIY3_zoYJKeq54oeNfJqyKeac0B-3UmL2vZipF7Pvxfz1Mlo3kxUQ8WhoRqmglP8CEj6I0A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Hao</creator><creator>Lopez-Dekker, Paco</creator><creator>Li, Shaoning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0221-4403</orcidid><orcidid>https://orcid.org/0000-0001-7089-8344</orcidid></search><sort><creationdate>2020</creationdate><title>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</title><author>Zhang, Hao ; Lopez-Dekker, Paco ; Li, Shaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-611c543882a890c025ced5098e5d485604afce49935d568210c4f317deef44853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Coefficient of variation</topic><topic>Deformation effects</topic><topic>Density</topic><topic>Estimation</topic><topic>Gaussian distribution</topic><topic>Grasslands</topic><topic>Homogeneous area</topic><topic>PSI</topic><topic>Reprocessing</topic><topic>SAR</topic><topic>Spatial resolution</topic><topic>Strain</topic><topic>super-resolution</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Lopez-Dekker, Paco</creatorcontrib><creatorcontrib>Li, Shaoning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Lopez-Dekker, Paco</au><au>Li, Shaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>181640</spage><epage>181649</epage><pages>181640-181649</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The performance of Persistent Scatterer Interferometry (PSI) depends heavily on Persistent Scatterer (PS) density. In order to increase PS density, we can apply Super-Resolution reprocessing algorithms in PSI. Involving the reprocessing algorithms and the peak-detection-based Persistent Scatterer Candidate points (PSCs) selection method, the full PSI chain is referred to as Super-Resolution PSI (SR-PSI). The implementation of the Super-Resolution reprocessing algorithm, however, is computationally intensive, which makes SR-PSI time-consuming. In this work, we propose to improve the efficiency by constraining the Capon-based reprocessing to the non-homogeneous areas (e.g., urban areas). We notice that the Capon algorithm performs similarly as the Fourier-based algorithm for homogeneous regions (e.g., grassland), thus we can use Single Look Complex (SLC) images for these areas. With the Coefficient of Variation (CV) as the index, we divide the full image into two classes: homogeneous areas, for which we select PSCs from the original stack, and non-homogeneous areas, for which we extract PSCs from the Capon-based reprocessed images. Then we combine the PSCs of both cases for further PSI processing. We applied the combination method to a stack of TerraSAR-X data. The results show that the proposed approach is more computationally efficient than the original SR-PSI with the effectiveness uncompromised, especially for applications aiming at the urban deformation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028491</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0221-4403</orcidid><orcidid>https://orcid.org/0000-0001-7089-8344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.181640-181649
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454678385
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Coefficient of variation
Deformation effects
Density
Estimation
Gaussian distribution
Grasslands
Homogeneous area
PSI
Reprocessing
SAR
Spatial resolution
Strain
super-resolution
Urban areas
title Combination of Super-Resolution PSI and Traditional PSI by Identification of Homogeneous Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Super-Resolution%20PSI%20and%20Traditional%20PSI%20by%20Identification%20of%20Homogeneous%20Areas&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Hao&rft.date=2020&rft.volume=8&rft.spage=181640&rft.epage=181649&rft.pages=181640-181649&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028491&rft_dat=%3Cproquest_doaj_%3E2454678385%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678385&rft_id=info:pmid/&rft_ieee_id=9211411&rft_doaj_id=oai_doaj_org_article_c2b4cba9d0c7448ca8af5cadfd6b2e5a&rfr_iscdi=true