Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate

For the purpose of promoting mechanical properties of bisphenol‐A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-02, Vol.138 (5), p.n/a
Hauptverfasser: Su, Yukai, Sai, Ting, Ran, Shiya, Fang, Zhengping, Guo, Zhenghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Journal of applied polymer science
container_volume 138
creator Su, Yukai
Sai, Ting
Ran, Shiya
Fang, Zhengping
Guo, Zhenghong
description For the purpose of promoting mechanical properties of bisphenol‐A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found that the phase morphology of PC/SAN/SAG blends is closely related with their mechanical properties. Large continuously distributed SAN phase or spherical dispersed SAN particles with average diameter over 2 μm tend to trigger premature tensile failure of blends due to stress concentration. The incorporation of SAG can simultaneously reinforce and toughen PC/SAN blends by controlling the size and distribution of the dispersed SAN particles. For the blends with fixed PC/SAN ratio, the elongation at break and fracture energy are markedly improved when SAN domain size is reduced by adding appropriate amount of SAG. Typically, for blends with a PC/SAN ratio of 75/25, adding 3 wt% SAG will cause the average diameter of SAN particles to reduce from 2.35 ± 1.20 to 0.74 ± 0.25 μm, meanwhile up to 95% increment in elongation at break and 115% increment in fracture energy is achieved.
doi_str_mv 10.1002/app.49762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454675800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454675800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3342-fba9a787c5f9d4a6e7d180e3e33ea9aad009480131d8b348be5f4644c4133a403</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEqUw8A8sMTGktWMnccaq4ksC0QHEaF2cc-sqjYPdgvLvSQkr0w3v3Z30CLnmbMYZS-fQdTNZFnl6QiaclUUi81SdksnAeKLKMjsnFzFuGeM8Y_mEfLz40G1849c9hbamOzQbaJ2Bhla4gS_nQ6Te0uDWrqY-rI-QdhD2zjQYaUDXWh8M1rTzTW8gVL6FPV6SMwtNxKu_OSXv93dvy8fk-fXhabl4TowQMk1sBSUUqjCZLWsJORY1VwwFCoEDgZqxUirGBa9VJaSqMLMyl9JILgRIJqbkZrzbBf95wLjXW38I7fBSpzKTeZEpdrRuR8sEH2NAq7vgdhB6zZk-dtNDN_3bbXDno_vtGuz_F_VitRo3fgDcb2_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454675800</pqid></control><display><type>article</type><title>Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Yukai ; Sai, Ting ; Ran, Shiya ; Fang, Zhengping ; Guo, Zhenghong</creator><creatorcontrib>Su, Yukai ; Sai, Ting ; Ran, Shiya ; Fang, Zhengping ; Guo, Zhenghong</creatorcontrib><description>For the purpose of promoting mechanical properties of bisphenol‐A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found that the phase morphology of PC/SAN/SAG blends is closely related with their mechanical properties. Large continuously distributed SAN phase or spherical dispersed SAN particles with average diameter over 2 μm tend to trigger premature tensile failure of blends due to stress concentration. The incorporation of SAG can simultaneously reinforce and toughen PC/SAN blends by controlling the size and distribution of the dispersed SAN particles. For the blends with fixed PC/SAN ratio, the elongation at break and fracture energy are markedly improved when SAN domain size is reduced by adding appropriate amount of SAG. Typically, for blends with a PC/SAN ratio of 75/25, adding 3 wt% SAG will cause the average diameter of SAN particles to reduce from 2.35 ± 1.20 to 0.74 ± 0.25 μm, meanwhile up to 95% increment in elongation at break and 115% increment in fracture energy is achieved.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49762</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>blends ; Copolymers ; Elongation ; Materials science ; Mechanical properties ; Morphology ; Polycarbonate resins ; polycarbonates ; Polymer blends ; Polymers ; Stress concentration ; Styrene acrylonitrile resins ; Styrenes ; Terpolymers</subject><ispartof>Journal of applied polymer science, 2021-02, Vol.138 (5), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3342-fba9a787c5f9d4a6e7d180e3e33ea9aad009480131d8b348be5f4644c4133a403</citedby><cites>FETCH-LOGICAL-c3342-fba9a787c5f9d4a6e7d180e3e33ea9aad009480131d8b348be5f4644c4133a403</cites><orcidid>0000-0002-3326-7831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.49762$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.49762$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Su, Yukai</creatorcontrib><creatorcontrib>Sai, Ting</creatorcontrib><creatorcontrib>Ran, Shiya</creatorcontrib><creatorcontrib>Fang, Zhengping</creatorcontrib><creatorcontrib>Guo, Zhenghong</creatorcontrib><title>Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate</title><title>Journal of applied polymer science</title><description>For the purpose of promoting mechanical properties of bisphenol‐A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found that the phase morphology of PC/SAN/SAG blends is closely related with their mechanical properties. Large continuously distributed SAN phase or spherical dispersed SAN particles with average diameter over 2 μm tend to trigger premature tensile failure of blends due to stress concentration. The incorporation of SAG can simultaneously reinforce and toughen PC/SAN blends by controlling the size and distribution of the dispersed SAN particles. For the blends with fixed PC/SAN ratio, the elongation at break and fracture energy are markedly improved when SAN domain size is reduced by adding appropriate amount of SAG. Typically, for blends with a PC/SAN ratio of 75/25, adding 3 wt% SAG will cause the average diameter of SAN particles to reduce from 2.35 ± 1.20 to 0.74 ± 0.25 μm, meanwhile up to 95% increment in elongation at break and 115% increment in fracture energy is achieved.</description><subject>blends</subject><subject>Copolymers</subject><subject>Elongation</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Polycarbonate resins</subject><subject>polycarbonates</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Stress concentration</subject><subject>Styrene acrylonitrile resins</subject><subject>Styrenes</subject><subject>Terpolymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EEqUw8A8sMTGktWMnccaq4ksC0QHEaF2cc-sqjYPdgvLvSQkr0w3v3Z30CLnmbMYZS-fQdTNZFnl6QiaclUUi81SdksnAeKLKMjsnFzFuGeM8Y_mEfLz40G1849c9hbamOzQbaJ2Bhla4gS_nQ6Te0uDWrqY-rI-QdhD2zjQYaUDXWh8M1rTzTW8gVL6FPV6SMwtNxKu_OSXv93dvy8fk-fXhabl4TowQMk1sBSUUqjCZLWsJORY1VwwFCoEDgZqxUirGBa9VJaSqMLMyl9JILgRIJqbkZrzbBf95wLjXW38I7fBSpzKTeZEpdrRuR8sEH2NAq7vgdhB6zZk-dtNDN_3bbXDno_vtGuz_F_VitRo3fgDcb2_n</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Su, Yukai</creator><creator>Sai, Ting</creator><creator>Ran, Shiya</creator><creator>Fang, Zhengping</creator><creator>Guo, Zhenghong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3326-7831</orcidid></search><sort><creationdate>20210205</creationdate><title>Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate</title><author>Su, Yukai ; Sai, Ting ; Ran, Shiya ; Fang, Zhengping ; Guo, Zhenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3342-fba9a787c5f9d4a6e7d180e3e33ea9aad009480131d8b348be5f4644c4133a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>blends</topic><topic>Copolymers</topic><topic>Elongation</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Polycarbonate resins</topic><topic>polycarbonates</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Stress concentration</topic><topic>Styrene acrylonitrile resins</topic><topic>Styrenes</topic><topic>Terpolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yukai</creatorcontrib><creatorcontrib>Sai, Ting</creatorcontrib><creatorcontrib>Ran, Shiya</creatorcontrib><creatorcontrib>Fang, Zhengping</creatorcontrib><creatorcontrib>Guo, Zhenghong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Yukai</au><au>Sai, Ting</au><au>Ran, Shiya</au><au>Fang, Zhengping</au><au>Guo, Zhenghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-02-05</date><risdate>2021</risdate><volume>138</volume><issue>5</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>For the purpose of promoting mechanical properties of bisphenol‐A polycarbonate (PC) reinforced by rigid organic styrene–acrylonitrile copolymer (SAN) particles, styrene/acrylonitrile/glycidyl methacrylate terpolymer (SAG) was synthesized and applied as compatibilizer for PC/SAN blends. It is found that the phase morphology of PC/SAN/SAG blends is closely related with their mechanical properties. Large continuously distributed SAN phase or spherical dispersed SAN particles with average diameter over 2 μm tend to trigger premature tensile failure of blends due to stress concentration. The incorporation of SAG can simultaneously reinforce and toughen PC/SAN blends by controlling the size and distribution of the dispersed SAN particles. For the blends with fixed PC/SAN ratio, the elongation at break and fracture energy are markedly improved when SAN domain size is reduced by adding appropriate amount of SAG. Typically, for blends with a PC/SAN ratio of 75/25, adding 3 wt% SAG will cause the average diameter of SAN particles to reduce from 2.35 ± 1.20 to 0.74 ± 0.25 μm, meanwhile up to 95% increment in elongation at break and 115% increment in fracture energy is achieved.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.49762</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3326-7831</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2021-02, Vol.138 (5), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2454675800
source Wiley Online Library Journals Frontfile Complete
subjects blends
Copolymers
Elongation
Materials science
Mechanical properties
Morphology
Polycarbonate resins
polycarbonates
Polymer blends
Polymers
Stress concentration
Styrene acrylonitrile resins
Styrenes
Terpolymers
title Morphology and mechanical behaviors of rigid organic particles reinforced polycarbonate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20mechanical%20behaviors%20of%20rigid%20organic%20particles%20reinforced%20polycarbonate&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Su,%20Yukai&rft.date=2021-02-05&rft.volume=138&rft.issue=5&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49762&rft_dat=%3Cproquest_cross%3E2454675800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454675800&rft_id=info:pmid/&rfr_iscdi=true