An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter
Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this p...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Dai, Wanxuan Li, Chunquan Cui, Zhiling Wu, Yufan Zhang, Leyingyue Huang, Junru |
description | Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms. |
doi_str_mv | 10.1109/ACCESS.2020.3006102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454643431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9129733</ieee_id><doaj_id>oai_doaj_org_article_bcbaf9f689914da5ab29bbcdba7a2c81</doaj_id><sourcerecordid>2454643431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaWFhjRfkBdBn3ermy96NM6muxBIIO2zGMkjrxav5crKZfv19dYhZB5mhsOcM8OcLLtmdM0YVT_qptk8Pq455XQtKC0Y5Z-yC84KtRK5KD5_6L9mV9N0oHNUM5SXF9lrPZDdcYzhGVtyE6ELg-tPpO67EH3aH8nLnMnWd3uMZPM69sEnSD4MpIERjO99OpEUyP2Y_NH_RZL2SG5w8t1AgiPbk4m-JQ_hZabXNvlnJLe-Txi_ZV8c9BNevdXL7Pft5lezXd3d_9w19d3KSlqlVa5UjoVSzipTWjQOsGwdqLy11kmEvCylsZDzgiksmXCKGVWVktFCFcCluMx2i24b4KDH6I8QTzqA1_-BEDsNMXnbozbWgFOuqJRisoUcDFfG2NZACdxWbNb6vmjN__rzhFPSh_AUh_l8zWUuCymkOE-JZcrGME0R3ftWRvXZMb04ps-O6TfHZtb1wvKI-M5QjKtSCPEPcR2TzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643431</pqid></control><display><type>article</type><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</creator><creatorcontrib>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</creatorcontrib><description>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3006102</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active filters ; Algorithms ; Design optimization ; Division ; Dragonfly algorithm (DA) ; Evolutionary computation ; Exploitation ; Exploration ; Falling ; Global optimization ; Harmonic analysis ; Harmonic pollution (HP) ; Hybrid active power filter (HAPF) ; Labor ; Local optimization ; New technology ; Optimization ; Parameter estimation ; Population ; Power harmonic filters ; Search algorithms ; Sociology ; Statistics</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</citedby><cites>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</cites><orcidid>0000-0003-2189-2485 ; 0000-0003-4659-2622 ; 0000-0002-2758-2835 ; 0000-0002-3235-5426 ; 0000-0001-6638-3110 ; 0000-0002-5493-6379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9129733$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Dai, Wanxuan</creatorcontrib><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Cui, Zhiling</creatorcontrib><creatorcontrib>Wu, Yufan</creatorcontrib><creatorcontrib>Zhang, Leyingyue</creatorcontrib><creatorcontrib>Huang, Junru</creatorcontrib><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><title>IEEE access</title><addtitle>Access</addtitle><description>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</description><subject>Active filters</subject><subject>Algorithms</subject><subject>Design optimization</subject><subject>Division</subject><subject>Dragonfly algorithm (DA)</subject><subject>Evolutionary computation</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Falling</subject><subject>Global optimization</subject><subject>Harmonic analysis</subject><subject>Harmonic pollution (HP)</subject><subject>Hybrid active power filter (HAPF)</subject><subject>Labor</subject><subject>Local optimization</subject><subject>New technology</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Population</subject><subject>Power harmonic filters</subject><subject>Search algorithms</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaWFhjRfkBdBn3ermy96NM6muxBIIO2zGMkjrxav5crKZfv19dYhZB5mhsOcM8OcLLtmdM0YVT_qptk8Pq455XQtKC0Y5Z-yC84KtRK5KD5_6L9mV9N0oHNUM5SXF9lrPZDdcYzhGVtyE6ELg-tPpO67EH3aH8nLnMnWd3uMZPM69sEnSD4MpIERjO99OpEUyP2Y_NH_RZL2SG5w8t1AgiPbk4m-JQ_hZabXNvlnJLe-Txi_ZV8c9BNevdXL7Pft5lezXd3d_9w19d3KSlqlVa5UjoVSzipTWjQOsGwdqLy11kmEvCylsZDzgiksmXCKGVWVktFCFcCluMx2i24b4KDH6I8QTzqA1_-BEDsNMXnbozbWgFOuqJRisoUcDFfG2NZACdxWbNb6vmjN__rzhFPSh_AUh_l8zWUuCymkOE-JZcrGME0R3ftWRvXZMb04ps-O6TfHZtb1wvKI-M5QjKtSCPEPcR2TzA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Dai, Wanxuan</creator><creator>Li, Chunquan</creator><creator>Cui, Zhiling</creator><creator>Wu, Yufan</creator><creator>Zhang, Leyingyue</creator><creator>Huang, Junru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2189-2485</orcidid><orcidid>https://orcid.org/0000-0003-4659-2622</orcidid><orcidid>https://orcid.org/0000-0002-2758-2835</orcidid><orcidid>https://orcid.org/0000-0002-3235-5426</orcidid><orcidid>https://orcid.org/0000-0001-6638-3110</orcidid><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid></search><sort><creationdate>20200101</creationdate><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><author>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active filters</topic><topic>Algorithms</topic><topic>Design optimization</topic><topic>Division</topic><topic>Dragonfly algorithm (DA)</topic><topic>Evolutionary computation</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Falling</topic><topic>Global optimization</topic><topic>Harmonic analysis</topic><topic>Harmonic pollution (HP)</topic><topic>Hybrid active power filter (HAPF)</topic><topic>Labor</topic><topic>Local optimization</topic><topic>New technology</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Population</topic><topic>Power harmonic filters</topic><topic>Search algorithms</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wanxuan</creatorcontrib><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Cui, Zhiling</creatorcontrib><creatorcontrib>Wu, Yufan</creatorcontrib><creatorcontrib>Zhang, Leyingyue</creatorcontrib><creatorcontrib>Huang, Junru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wanxuan</au><au>Li, Chunquan</au><au>Cui, Zhiling</au><au>Wu, Yufan</au><au>Zhang, Leyingyue</au><au>Huang, Junru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3006102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2189-2485</orcidid><orcidid>https://orcid.org/0000-0003-4659-2622</orcidid><orcidid>https://orcid.org/0000-0002-2758-2835</orcidid><orcidid>https://orcid.org/0000-0002-3235-5426</orcidid><orcidid>https://orcid.org/0000-0001-6638-3110</orcidid><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454643431 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Active filters Algorithms Design optimization Division Dragonfly algorithm (DA) Evolutionary computation Exploitation Exploration Falling Global optimization Harmonic analysis Harmonic pollution (HP) Hybrid active power filter (HAPF) Labor Local optimization New technology Optimization Parameter estimation Population Power harmonic filters Search algorithms Sociology Statistics |
title | An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Dragonfly%20Algorithm%20with%20Higher%20Exploitation%20Capability%20to%20Optimize%20the%20Design%20of%20Hybrid%20Power%20Active%20Filter&rft.jtitle=IEEE%20access&rft.au=Dai,%20Wanxuan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3006102&rft_dat=%3Cproquest_doaj_%3E2454643431%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643431&rft_id=info:pmid/&rft_ieee_id=9129733&rft_doaj_id=oai_doaj_org_article_bcbaf9f689914da5ab29bbcdba7a2c81&rfr_iscdi=true |