An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter

Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Dai, Wanxuan, Li, Chunquan, Cui, Zhiling, Wu, Yufan, Zhang, Leyingyue, Huang, Junru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Dai, Wanxuan
Li, Chunquan
Cui, Zhiling
Wu, Yufan
Zhang, Leyingyue
Huang, Junru
description Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.
doi_str_mv 10.1109/ACCESS.2020.3006102
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454643431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9129733</ieee_id><doaj_id>oai_doaj_org_article_bcbaf9f689914da5ab29bbcdba7a2c81</doaj_id><sourcerecordid>2454643431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaWFhjRfkBdBn3ermy96NM6muxBIIO2zGMkjrxav5crKZfv19dYhZB5mhsOcM8OcLLtmdM0YVT_qptk8Pq455XQtKC0Y5Z-yC84KtRK5KD5_6L9mV9N0oHNUM5SXF9lrPZDdcYzhGVtyE6ELg-tPpO67EH3aH8nLnMnWd3uMZPM69sEnSD4MpIERjO99OpEUyP2Y_NH_RZL2SG5w8t1AgiPbk4m-JQ_hZabXNvlnJLe-Txi_ZV8c9BNevdXL7Pft5lezXd3d_9w19d3KSlqlVa5UjoVSzipTWjQOsGwdqLy11kmEvCylsZDzgiksmXCKGVWVktFCFcCluMx2i24b4KDH6I8QTzqA1_-BEDsNMXnbozbWgFOuqJRisoUcDFfG2NZACdxWbNb6vmjN__rzhFPSh_AUh_l8zWUuCymkOE-JZcrGME0R3ftWRvXZMb04ps-O6TfHZtb1wvKI-M5QjKtSCPEPcR2TzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643431</pqid></control><display><type>article</type><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</creator><creatorcontrib>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</creatorcontrib><description>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3006102</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active filters ; Algorithms ; Design optimization ; Division ; Dragonfly algorithm (DA) ; Evolutionary computation ; Exploitation ; Exploration ; Falling ; Global optimization ; Harmonic analysis ; Harmonic pollution (HP) ; Hybrid active power filter (HAPF) ; Labor ; Local optimization ; New technology ; Optimization ; Parameter estimation ; Population ; Power harmonic filters ; Search algorithms ; Sociology ; Statistics</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</citedby><cites>FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</cites><orcidid>0000-0003-2189-2485 ; 0000-0003-4659-2622 ; 0000-0002-2758-2835 ; 0000-0002-3235-5426 ; 0000-0001-6638-3110 ; 0000-0002-5493-6379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9129733$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Dai, Wanxuan</creatorcontrib><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Cui, Zhiling</creatorcontrib><creatorcontrib>Wu, Yufan</creatorcontrib><creatorcontrib>Zhang, Leyingyue</creatorcontrib><creatorcontrib>Huang, Junru</creatorcontrib><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><title>IEEE access</title><addtitle>Access</addtitle><description>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</description><subject>Active filters</subject><subject>Algorithms</subject><subject>Design optimization</subject><subject>Division</subject><subject>Dragonfly algorithm (DA)</subject><subject>Evolutionary computation</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Falling</subject><subject>Global optimization</subject><subject>Harmonic analysis</subject><subject>Harmonic pollution (HP)</subject><subject>Hybrid active power filter (HAPF)</subject><subject>Labor</subject><subject>Local optimization</subject><subject>New technology</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Population</subject><subject>Power harmonic filters</subject><subject>Search algorithms</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaWFhjRfkBdBn3ermy96NM6muxBIIO2zGMkjrxav5crKZfv19dYhZB5mhsOcM8OcLLtmdM0YVT_qptk8Pq455XQtKC0Y5Z-yC84KtRK5KD5_6L9mV9N0oHNUM5SXF9lrPZDdcYzhGVtyE6ELg-tPpO67EH3aH8nLnMnWd3uMZPM69sEnSD4MpIERjO99OpEUyP2Y_NH_RZL2SG5w8t1AgiPbk4m-JQ_hZabXNvlnJLe-Txi_ZV8c9BNevdXL7Pft5lezXd3d_9w19d3KSlqlVa5UjoVSzipTWjQOsGwdqLy11kmEvCylsZDzgiksmXCKGVWVktFCFcCluMx2i24b4KDH6I8QTzqA1_-BEDsNMXnbozbWgFOuqJRisoUcDFfG2NZACdxWbNb6vmjN__rzhFPSh_AUh_l8zWUuCymkOE-JZcrGME0R3ftWRvXZMb04ps-O6TfHZtb1wvKI-M5QjKtSCPEPcR2TzA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Dai, Wanxuan</creator><creator>Li, Chunquan</creator><creator>Cui, Zhiling</creator><creator>Wu, Yufan</creator><creator>Zhang, Leyingyue</creator><creator>Huang, Junru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2189-2485</orcidid><orcidid>https://orcid.org/0000-0003-4659-2622</orcidid><orcidid>https://orcid.org/0000-0002-2758-2835</orcidid><orcidid>https://orcid.org/0000-0002-3235-5426</orcidid><orcidid>https://orcid.org/0000-0001-6638-3110</orcidid><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid></search><sort><creationdate>20200101</creationdate><title>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</title><author>Dai, Wanxuan ; Li, Chunquan ; Cui, Zhiling ; Wu, Yufan ; Zhang, Leyingyue ; Huang, Junru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5995e699fc9b7cebfae7dfa95dccf4ea5774bca52619e713f91b987410696a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active filters</topic><topic>Algorithms</topic><topic>Design optimization</topic><topic>Division</topic><topic>Dragonfly algorithm (DA)</topic><topic>Evolutionary computation</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Falling</topic><topic>Global optimization</topic><topic>Harmonic analysis</topic><topic>Harmonic pollution (HP)</topic><topic>Hybrid active power filter (HAPF)</topic><topic>Labor</topic><topic>Local optimization</topic><topic>New technology</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Population</topic><topic>Power harmonic filters</topic><topic>Search algorithms</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wanxuan</creatorcontrib><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Cui, Zhiling</creatorcontrib><creatorcontrib>Wu, Yufan</creatorcontrib><creatorcontrib>Zhang, Leyingyue</creatorcontrib><creatorcontrib>Huang, Junru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wanxuan</au><au>Li, Chunquan</au><au>Cui, Zhiling</au><au>Wu, Yufan</au><au>Zhang, Leyingyue</au><au>Huang, Junru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Hybrid power active filter (HAPF) is an important device to suppress the harmonics of the power system. In HAPF, the parameters estimation has a great impact on ensuring the power quality in the power system. Aiming at the problem of minimizing the harmonic pollution (HP) in the power system, this paper proposes a new technology namely IEDA for parameter optimization of hybrid power active filters, which is an improved dragonfly algorithm (DA) with higher exploitation capability. DA is a global search algorithm with sufficient ability to avoid falling into local optimization, however, DA performs poorly for local search. In the IEDA, we adopt a strategy of division of labor to divide particles into exploitation population and exploration population. In the exploitation population, we introduce the information exchange mechanism of the differential evolution (DE) and set up an exemplar pool to enhance its exploitation capability. In the exploration population, we use the global search ability of the DA to prevent particles from falling into a local optimum. Through the division of labor between exploitation population and exploration population, the problems of low accuracy and slow convergence of DA are effectively solved. Experimental results show that the algorithm has greatly improved accuracy and reliability compared with seven well-established algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3006102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2189-2485</orcidid><orcidid>https://orcid.org/0000-0003-4659-2622</orcidid><orcidid>https://orcid.org/0000-0002-2758-2835</orcidid><orcidid>https://orcid.org/0000-0002-3235-5426</orcidid><orcidid>https://orcid.org/0000-0001-6638-3110</orcidid><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454643431
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Active filters
Algorithms
Design optimization
Division
Dragonfly algorithm (DA)
Evolutionary computation
Exploitation
Exploration
Falling
Global optimization
Harmonic analysis
Harmonic pollution (HP)
Hybrid active power filter (HAPF)
Labor
Local optimization
New technology
Optimization
Parameter estimation
Population
Power harmonic filters
Search algorithms
Sociology
Statistics
title An Improved Dragonfly Algorithm with Higher Exploitation Capability to Optimize the Design of Hybrid Power Active Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Dragonfly%20Algorithm%20with%20Higher%20Exploitation%20Capability%20to%20Optimize%20the%20Design%20of%20Hybrid%20Power%20Active%20Filter&rft.jtitle=IEEE%20access&rft.au=Dai,%20Wanxuan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3006102&rft_dat=%3Cproquest_doaj_%3E2454643431%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643431&rft_id=info:pmid/&rft_ieee_id=9129733&rft_doaj_id=oai_doaj_org_article_bcbaf9f689914da5ab29bbcdba7a2c81&rfr_iscdi=true