Weight-Based K-Truss Community Search via Edge Attachment

Community search is the task of discovering dense subgraph that satisfy a set of given query parameters. Most community search algorithms consider link structure while ignoring link weight. A recent study proposed the idea of discovering weighted communities which focuses on both link structure and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Habib, Wafaa M. A., Mokhtar, Hoda M. O., El-Sharkawi, Mohamed E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Habib, Wafaa M. A.
Mokhtar, Hoda M. O.
El-Sharkawi, Mohamed E.
description Community search is the task of discovering dense subgraph that satisfy a set of given query parameters. Most community search algorithms consider link structure while ignoring link weight. A recent study proposed the idea of discovering weighted communities which focuses on both link structure and link weight using an online search approach and index-based approach. In this paper two online algorithms are proposed to scale-up the existing online approach efficiency. Performance evaluation of the proposed algorithms against the existing online approach over different datasets shows a great improvement in terms of search and query evaluation time.
doi_str_mv 10.1109/ACCESS.2020.3016214
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454643365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9166479</ieee_id><doaj_id>oai_doaj_org_article_a85a6f874cad41c9b8bd9c8fdfe51e2e</doaj_id><sourcerecordid>2454643365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-78c5cc82298d7deef2d3a12ff36ffb78060634c8a8bc1058dcd927442bee89a3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-gl4CnlP3Xza7xxqqFgseWvC4bHZn25SmqbuJ0G9vaqQ4lxke894MP4SmBM8IweppXhSL9XpGMcUzhomghN-gESVCpSxj4vbffI8mMe5xX7KXsnyE1CdU212bPpsILnlPN6GLMSmauu6OVXtO1mCC3SXflUkWbgvJvG2N3dVwbB_QnTeHCJO_Pkabl8WmeEtXH6_LYr5KLceyTXNpM2slpUq63AF46pgh1HsmvC9ziQUWjFtpZGkJzqSzTtGcc1oCSGXYGC2HWNeYvT6FqjbhrBtT6V-hCVttQlvZA2gjMyO8zLk1jhOrSlk6ZaV3HjICFPqsxyHrFJqvDmKr900Xjv33mvKMC86YyPotNmzZ0MQYwF-vEqwvxPVAXF-I6z_ivWs6uCoAuDoUEYLniv0AOrJ7tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643365</pqid></control><display><type>article</type><title>Weight-Based K-Truss Community Search via Edge Attachment</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Habib, Wafaa M. A. ; Mokhtar, Hoda M. O. ; El-Sharkawi, Mohamed E.</creator><creatorcontrib>Habib, Wafaa M. A. ; Mokhtar, Hoda M. O. ; El-Sharkawi, Mohamed E.</creatorcontrib><description>Community search is the task of discovering dense subgraph that satisfy a set of given query parameters. Most community search algorithms consider link structure while ignoring link weight. A recent study proposed the idea of discovering weighted communities which focuses on both link structure and link weight using an online search approach and index-based approach. In this paper two online algorithms are proposed to scale-up the existing online approach efficiency. Performance evaluation of the proposed algorithms against the existing online approach over different datasets shows a great improvement in terms of search and query evaluation time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016214</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Community Search ; Computers ; Graph theory ; Image edge detection ; Indexes ; Performance evaluation ; Query processing ; Search algorithms ; Search problems ; Task analysis ; Weight</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-78c5cc82298d7deef2d3a12ff36ffb78060634c8a8bc1058dcd927442bee89a3</citedby><cites>FETCH-LOGICAL-c408t-78c5cc82298d7deef2d3a12ff36ffb78060634c8a8bc1058dcd927442bee89a3</cites><orcidid>0000-0002-7877-4108 ; 0000-0002-4900-5035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9166479$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Habib, Wafaa M. A.</creatorcontrib><creatorcontrib>Mokhtar, Hoda M. O.</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed E.</creatorcontrib><title>Weight-Based K-Truss Community Search via Edge Attachment</title><title>IEEE access</title><addtitle>Access</addtitle><description>Community search is the task of discovering dense subgraph that satisfy a set of given query parameters. Most community search algorithms consider link structure while ignoring link weight. A recent study proposed the idea of discovering weighted communities which focuses on both link structure and link weight using an online search approach and index-based approach. In this paper two online algorithms are proposed to scale-up the existing online approach efficiency. Performance evaluation of the proposed algorithms against the existing online approach over different datasets shows a great improvement in terms of search and query evaluation time.</description><subject>Algorithms</subject><subject>Community Search</subject><subject>Computers</subject><subject>Graph theory</subject><subject>Image edge detection</subject><subject>Indexes</subject><subject>Performance evaluation</subject><subject>Query processing</subject><subject>Search algorithms</subject><subject>Search problems</subject><subject>Task analysis</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-gl4CnlP3Xza7xxqqFgseWvC4bHZn25SmqbuJ0G9vaqQ4lxke894MP4SmBM8IweppXhSL9XpGMcUzhomghN-gESVCpSxj4vbffI8mMe5xX7KXsnyE1CdU212bPpsILnlPN6GLMSmauu6OVXtO1mCC3SXflUkWbgvJvG2N3dVwbB_QnTeHCJO_Pkabl8WmeEtXH6_LYr5KLceyTXNpM2slpUq63AF46pgh1HsmvC9ziQUWjFtpZGkJzqSzTtGcc1oCSGXYGC2HWNeYvT6FqjbhrBtT6V-hCVttQlvZA2gjMyO8zLk1jhOrSlk6ZaV3HjICFPqsxyHrFJqvDmKr900Xjv33mvKMC86YyPotNmzZ0MQYwF-vEqwvxPVAXF-I6z_ivWs6uCoAuDoUEYLniv0AOrJ7tg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Habib, Wafaa M. A.</creator><creator>Mokhtar, Hoda M. O.</creator><creator>El-Sharkawi, Mohamed E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7877-4108</orcidid><orcidid>https://orcid.org/0000-0002-4900-5035</orcidid></search><sort><creationdate>20200101</creationdate><title>Weight-Based K-Truss Community Search via Edge Attachment</title><author>Habib, Wafaa M. A. ; Mokhtar, Hoda M. O. ; El-Sharkawi, Mohamed E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-78c5cc82298d7deef2d3a12ff36ffb78060634c8a8bc1058dcd927442bee89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Community Search</topic><topic>Computers</topic><topic>Graph theory</topic><topic>Image edge detection</topic><topic>Indexes</topic><topic>Performance evaluation</topic><topic>Query processing</topic><topic>Search algorithms</topic><topic>Search problems</topic><topic>Task analysis</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habib, Wafaa M. A.</creatorcontrib><creatorcontrib>Mokhtar, Hoda M. O.</creatorcontrib><creatorcontrib>El-Sharkawi, Mohamed E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habib, Wafaa M. A.</au><au>Mokhtar, Hoda M. O.</au><au>El-Sharkawi, Mohamed E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight-Based K-Truss Community Search via Edge Attachment</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Community search is the task of discovering dense subgraph that satisfy a set of given query parameters. Most community search algorithms consider link structure while ignoring link weight. A recent study proposed the idea of discovering weighted communities which focuses on both link structure and link weight using an online search approach and index-based approach. In this paper two online algorithms are proposed to scale-up the existing online approach efficiency. Performance evaluation of the proposed algorithms against the existing online approach over different datasets shows a great improvement in terms of search and query evaluation time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016214</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7877-4108</orcidid><orcidid>https://orcid.org/0000-0002-4900-5035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454643365
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Community Search
Computers
Graph theory
Image edge detection
Indexes
Performance evaluation
Query processing
Search algorithms
Search problems
Task analysis
Weight
title Weight-Based K-Truss Community Search via Edge Attachment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight-Based%20K-Truss%20Community%20Search%20via%20Edge%20Attachment&rft.jtitle=IEEE%20access&rft.au=Habib,%20Wafaa%20M.%20A.&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016214&rft_dat=%3Cproquest_ieee_%3E2454643365%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643365&rft_id=info:pmid/&rft_ieee_id=9166479&rft_doaj_id=oai_doaj_org_article_a85a6f874cad41c9b8bd9c8fdfe51e2e&rfr_iscdi=true