Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays

This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.134413-134421
Hauptverfasser: Leon-Medina, Jersson X., Pineda-Munoz, Wilman Alonso, Burgos, Diego Alexander Tibaduiza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134421
container_issue
container_start_page 134413
container_title IEEE access
container_volume 8
creator Leon-Medina, Jersson X.
Pineda-Munoz, Wilman Alonso
Burgos, Diego Alexander Tibaduiza
description This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.
doi_str_mv 10.1109/ACCESS.2020.3010711
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454643231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9145541</ieee_id><doaj_id>oai_doaj_org_article_6eb5c34a1d04441f90ce4f6c2616ebfd</doaj_id><sourcerecordid>2454643231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</originalsourceid><addsrcrecordid>eNpNUU1PAjEU3BhNJMgv4LKJZ7Cfu90jWVAxRA9g4q3ptq-mBLfYLgf-vYUlxHd5k-nMvCaTZWOMphij6mlW14v1ekoQQVOKMCoxvskGBBfVhHJa3P7D99koxi1KIxLFy0H29eZd2-VzF7vgmkPnfJvPjNp36gytD_k8ONvltQ8B9Jl0bb7YJRx863T-7iPkm-Me8jW0MelnIahjfMjurNpFGF32MPt8Xmzq18nq42VZz1YTzZDoJg1vdMkYU9ooVCJLhNaCKjAlR0AUWMFBcFQZYUhRMqRFU-kKDLNYNbwSdJgt-1zj1Vbug_tR4Si9cvJM-PAtVeic3oEsoOGaMoUNShexrZAGZgtNCpyerElZj33WPvjfA8RObv0htOn7kjDOCkYJxUlFe5UOPsYA9noVI3lqRPaNyFMj8tJIco17lwOAq6PCjHOG6R8JqIe5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643231</pqid></control><display><type>article</type><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</creator><creatorcontrib>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</creatorcontrib><description>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3010711</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation ; Algorithms ; Classification ; Compensation ; Domains ; Drift ; Drift compensation ; electronic nose ; Electronic noses ; Feature extraction ; joint distribution adaptation (JDA) ; Kernels ; Learning systems ; Machine learning ; Metal oxides ; pattern recognition ; sensor array ; Sensor arrays ; Sensors ; Signal processing ; Task analysis ; transfer learning ; VOCs ; Volatile organic compounds</subject><ispartof>IEEE access, 2020, Vol.8, p.134413-134421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</citedby><cites>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</cites><orcidid>0000-0002-9198-1996 ; 0000-0003-3565-8526 ; 0000-0002-4498-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9145541$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Leon-Medina, Jersson X.</creatorcontrib><creatorcontrib>Pineda-Munoz, Wilman Alonso</creatorcontrib><creatorcontrib>Burgos, Diego Alexander Tibaduiza</creatorcontrib><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><title>IEEE access</title><addtitle>Access</addtitle><description>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Compensation</subject><subject>Domains</subject><subject>Drift</subject><subject>Drift compensation</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Feature extraction</subject><subject>joint distribution adaptation (JDA)</subject><subject>Kernels</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Metal oxides</subject><subject>pattern recognition</subject><subject>sensor array</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Task analysis</subject><subject>transfer learning</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAjEU3BhNJMgv4LKJZ7Cfu90jWVAxRA9g4q3ptq-mBLfYLgf-vYUlxHd5k-nMvCaTZWOMphij6mlW14v1ekoQQVOKMCoxvskGBBfVhHJa3P7D99koxi1KIxLFy0H29eZd2-VzF7vgmkPnfJvPjNp36gytD_k8ONvltQ8B9Jl0bb7YJRx863T-7iPkm-Me8jW0MelnIahjfMjurNpFGF32MPt8Xmzq18nq42VZz1YTzZDoJg1vdMkYU9ooVCJLhNaCKjAlR0AUWMFBcFQZYUhRMqRFU-kKDLNYNbwSdJgt-1zj1Vbug_tR4Si9cvJM-PAtVeic3oEsoOGaMoUNShexrZAGZgtNCpyerElZj33WPvjfA8RObv0htOn7kjDOCkYJxUlFe5UOPsYA9noVI3lqRPaNyFMj8tJIco17lwOAq6PCjHOG6R8JqIe5</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Leon-Medina, Jersson X.</creator><creator>Pineda-Munoz, Wilman Alonso</creator><creator>Burgos, Diego Alexander Tibaduiza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9198-1996</orcidid><orcidid>https://orcid.org/0000-0003-3565-8526</orcidid><orcidid>https://orcid.org/0000-0002-4498-596X</orcidid></search><sort><creationdate>2020</creationdate><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><author>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Compensation</topic><topic>Domains</topic><topic>Drift</topic><topic>Drift compensation</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Feature extraction</topic><topic>joint distribution adaptation (JDA)</topic><topic>Kernels</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Metal oxides</topic><topic>pattern recognition</topic><topic>sensor array</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Task analysis</topic><topic>transfer learning</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon-Medina, Jersson X.</creatorcontrib><creatorcontrib>Pineda-Munoz, Wilman Alonso</creatorcontrib><creatorcontrib>Burgos, Diego Alexander Tibaduiza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leon-Medina, Jersson X.</au><au>Pineda-Munoz, Wilman Alonso</au><au>Burgos, Diego Alexander Tibaduiza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>134413</spage><epage>134421</epage><pages>134413-134421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3010711</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9198-1996</orcidid><orcidid>https://orcid.org/0000-0003-3565-8526</orcidid><orcidid>https://orcid.org/0000-0002-4498-596X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.134413-134421
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454643231
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptation
Algorithms
Classification
Compensation
Domains
Drift
Drift compensation
electronic nose
Electronic noses
Feature extraction
joint distribution adaptation (JDA)
Kernels
Learning systems
Machine learning
Metal oxides
pattern recognition
sensor array
Sensor arrays
Sensors
Signal processing
Task analysis
transfer learning
VOCs
Volatile organic compounds
title Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Distribution%20Adaptation%20for%20Drift%20Correction%20in%20Electronic%20Nose%20Type%20Sensor%20Arrays&rft.jtitle=IEEE%20access&rft.au=Leon-Medina,%20Jersson%20X.&rft.date=2020&rft.volume=8&rft.spage=134413&rft.epage=134421&rft.pages=134413-134421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3010711&rft_dat=%3Cproquest_ieee_%3E2454643231%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643231&rft_id=info:pmid/&rft_ieee_id=9145541&rft_doaj_id=oai_doaj_org_article_6eb5c34a1d04441f90ce4f6c2616ebfd&rfr_iscdi=true