Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays
This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature ha...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.134413-134421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134421 |
---|---|
container_issue | |
container_start_page | 134413 |
container_title | IEEE access |
container_volume | 8 |
creator | Leon-Medina, Jersson X. Pineda-Munoz, Wilman Alonso Burgos, Diego Alexander Tibaduiza |
description | This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method. |
doi_str_mv | 10.1109/ACCESS.2020.3010711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454643231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9145541</ieee_id><doaj_id>oai_doaj_org_article_6eb5c34a1d04441f90ce4f6c2616ebfd</doaj_id><sourcerecordid>2454643231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</originalsourceid><addsrcrecordid>eNpNUU1PAjEU3BhNJMgv4LKJZ7Cfu90jWVAxRA9g4q3ptq-mBLfYLgf-vYUlxHd5k-nMvCaTZWOMphij6mlW14v1ekoQQVOKMCoxvskGBBfVhHJa3P7D99koxi1KIxLFy0H29eZd2-VzF7vgmkPnfJvPjNp36gytD_k8ONvltQ8B9Jl0bb7YJRx863T-7iPkm-Me8jW0MelnIahjfMjurNpFGF32MPt8Xmzq18nq42VZz1YTzZDoJg1vdMkYU9ooVCJLhNaCKjAlR0AUWMFBcFQZYUhRMqRFU-kKDLNYNbwSdJgt-1zj1Vbug_tR4Si9cvJM-PAtVeic3oEsoOGaMoUNShexrZAGZgtNCpyerElZj33WPvjfA8RObv0htOn7kjDOCkYJxUlFe5UOPsYA9noVI3lqRPaNyFMj8tJIco17lwOAq6PCjHOG6R8JqIe5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643231</pqid></control><display><type>article</type><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</creator><creatorcontrib>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</creatorcontrib><description>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3010711</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation ; Algorithms ; Classification ; Compensation ; Domains ; Drift ; Drift compensation ; electronic nose ; Electronic noses ; Feature extraction ; joint distribution adaptation (JDA) ; Kernels ; Learning systems ; Machine learning ; Metal oxides ; pattern recognition ; sensor array ; Sensor arrays ; Sensors ; Signal processing ; Task analysis ; transfer learning ; VOCs ; Volatile organic compounds</subject><ispartof>IEEE access, 2020, Vol.8, p.134413-134421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</citedby><cites>FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</cites><orcidid>0000-0002-9198-1996 ; 0000-0003-3565-8526 ; 0000-0002-4498-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9145541$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Leon-Medina, Jersson X.</creatorcontrib><creatorcontrib>Pineda-Munoz, Wilman Alonso</creatorcontrib><creatorcontrib>Burgos, Diego Alexander Tibaduiza</creatorcontrib><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><title>IEEE access</title><addtitle>Access</addtitle><description>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Compensation</subject><subject>Domains</subject><subject>Drift</subject><subject>Drift compensation</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Feature extraction</subject><subject>joint distribution adaptation (JDA)</subject><subject>Kernels</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Metal oxides</subject><subject>pattern recognition</subject><subject>sensor array</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Task analysis</subject><subject>transfer learning</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAjEU3BhNJMgv4LKJZ7Cfu90jWVAxRA9g4q3ptq-mBLfYLgf-vYUlxHd5k-nMvCaTZWOMphij6mlW14v1ekoQQVOKMCoxvskGBBfVhHJa3P7D99koxi1KIxLFy0H29eZd2-VzF7vgmkPnfJvPjNp36gytD_k8ONvltQ8B9Jl0bb7YJRx863T-7iPkm-Me8jW0MelnIahjfMjurNpFGF32MPt8Xmzq18nq42VZz1YTzZDoJg1vdMkYU9ooVCJLhNaCKjAlR0AUWMFBcFQZYUhRMqRFU-kKDLNYNbwSdJgt-1zj1Vbug_tR4Si9cvJM-PAtVeic3oEsoOGaMoUNShexrZAGZgtNCpyerElZj33WPvjfA8RObv0htOn7kjDOCkYJxUlFe5UOPsYA9noVI3lqRPaNyFMj8tJIco17lwOAq6PCjHOG6R8JqIe5</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Leon-Medina, Jersson X.</creator><creator>Pineda-Munoz, Wilman Alonso</creator><creator>Burgos, Diego Alexander Tibaduiza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9198-1996</orcidid><orcidid>https://orcid.org/0000-0003-3565-8526</orcidid><orcidid>https://orcid.org/0000-0002-4498-596X</orcidid></search><sort><creationdate>2020</creationdate><title>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</title><author>Leon-Medina, Jersson X. ; Pineda-Munoz, Wilman Alonso ; Burgos, Diego Alexander Tibaduiza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b5bc7444acda070f28cc83aed750e2aef85e8509d8d26740c8b9c9ed4f1ab5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Compensation</topic><topic>Domains</topic><topic>Drift</topic><topic>Drift compensation</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Feature extraction</topic><topic>joint distribution adaptation (JDA)</topic><topic>Kernels</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Metal oxides</topic><topic>pattern recognition</topic><topic>sensor array</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Task analysis</topic><topic>transfer learning</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon-Medina, Jersson X.</creatorcontrib><creatorcontrib>Pineda-Munoz, Wilman Alonso</creatorcontrib><creatorcontrib>Burgos, Diego Alexander Tibaduiza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leon-Medina, Jersson X.</au><au>Pineda-Munoz, Wilman Alonso</au><au>Burgos, Diego Alexander Tibaduiza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>134413</spage><epage>134421</epage><pages>134413-134421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This research deal with the drift compensation problem in sensor arrays named electronic noses. The drift problem occurs in this kind of sensor when they are exposed to an analyte for long periods, which may cause that the response of the sensor varies with time. Some approaches in the literature have tackled the drift compensation problem from the point of view of signal processing algorithms to obtain high rates of accuracy independently of time. In this work, the drift problem is solved using transfer learning with the joint distribution adaptation (JDA) method, which adapts both marginal and conditional distributions between domains, and requires no labeled data in the target domain to perform a classification task with a machine learning algorithm. The developed methodology for drift compensation is validated by measuring accuracy in the classification process. Validation considers a data set that measured six volatile organic compounds during a period of three years under strongly controlled operating conditions using a series of 16 metal oxide gas (MOX) sensors. JDA and Kernel JDA are used with three different types of kernels to determine the best behavior in terms of accuracy to correct the drift in electronic noses. As a result, it can be concluded that the approach using JDA outperforms standard learners like K-Nearest Neighbor (KNN) method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3010711</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9198-1996</orcidid><orcidid>https://orcid.org/0000-0003-3565-8526</orcidid><orcidid>https://orcid.org/0000-0002-4498-596X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.134413-134421 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454643231 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Adaptation Algorithms Classification Compensation Domains Drift Drift compensation electronic nose Electronic noses Feature extraction joint distribution adaptation (JDA) Kernels Learning systems Machine learning Metal oxides pattern recognition sensor array Sensor arrays Sensors Signal processing Task analysis transfer learning VOCs Volatile organic compounds |
title | Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Distribution%20Adaptation%20for%20Drift%20Correction%20in%20Electronic%20Nose%20Type%20Sensor%20Arrays&rft.jtitle=IEEE%20access&rft.au=Leon-Medina,%20Jersson%20X.&rft.date=2020&rft.volume=8&rft.spage=134413&rft.epage=134421&rft.pages=134413-134421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3010711&rft_dat=%3Cproquest_ieee_%3E2454643231%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643231&rft_id=info:pmid/&rft_ieee_id=9145541&rft_doaj_id=oai_doaj_org_article_6eb5c34a1d04441f90ce4f6c2616ebfd&rfr_iscdi=true |