Optimization of wireless video surveillance system for smart campus based on Internet of Things
In order to strengthen school security and build a wireless smart campus, this article optimizes the existing wireless video surveillance system based on the Internet of Things. This paper first optimizes the surveillance quality in the video surveillance system, and proposes a zero-copy buffer stra...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhou, Zhiqing Yu, Heng Shi, Hesheng |
description | In order to strengthen school security and build a wireless smart campus, this article optimizes the existing wireless video surveillance system based on the Internet of Things. This paper first optimizes the surveillance quality in the video surveillance system, and proposes a zero-copy buffer strategy, a network congestion suppression strategy, and a codec rate coordination strategy. Secondly, for the distributed wide area video surveillance system, a tracking optimization method based on multi-camera fusion is proposed. Finally, this paper constructs a Bayesian monitoring event modeling method based on genetic algorithm. Experimental results show that the optimized video surveillance system has basically stable delay, significantly reduced packet loss rate, and smooth video playback. This method can effectively realize the coordinated tracking of multiple cameras in a wide-area monitoring scenario, achieve high tracking and monitoring performance, and meet the requirements of smart campus construction. |
doi_str_mv | 10.1109/ACCESS.2020.3011951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2454640719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149620</ieee_id><doaj_id>oai_doaj_org_article_2f5a56204687495bbf3f26897c64f7e0</doaj_id><sourcerecordid>2454640719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-14a4e5d9edd0cd996b13ffc43c6a7d43141482a0fdd408d5693a551b9d12bb353</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxSPUSiDKJ-BiiWO1W_9PfEQRbVdC4gA9W449Bq-y8dZ2QPTT4yWIcmQutkbv9zzj1zTnBK8JwerHZd9f3d6uKaZ4zTAhSpCj5oQSqVZMMPnlw_24Oct5i2t1tSXak0bf7EvYhX-mhDih6NFTSDBCzugxOIgoz-kRwjiayQLKz7nADvmYUN6ZVJA1u_2c0WAyOFT5zVQgTVAORncPYbrP35qv3owZzt7O0-bPz6u7_vfq-ubXpr-8XlmOu7Ii3HAQToFz2Dql5ECY95YzK03rOCOc8I4a7J2reiekYkYIMihH6DDU1U6bzeLrotnqfQp1vmcdTdCvjZjudR042BE09cIISTGXXcuVGAbPPJWdaq3kvgVcvS4Wr32Kf2fIRW_jnKY6vqZccMlxS1RVsUVlU8w5gX9_lWB9CEYvwehDMPotmEp9X6gnGKLPNkD92HeyBiNE27aVqHVQd59X96G8ptjHeSoVPV_QAPAfUYSrujp7AeDOqj4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454640719</pqid></control><display><type>article</type><title>Optimization of wireless video surveillance system for smart campus based on Internet of Things</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Zhiqing ; Yu, Heng ; Shi, Hesheng</creator><creatorcontrib>Zhou, Zhiqing ; Yu, Heng ; Shi, Hesheng</creatorcontrib><description>In order to strengthen school security and build a wireless smart campus, this article optimizes the existing wireless video surveillance system based on the Internet of Things. This paper first optimizes the surveillance quality in the video surveillance system, and proposes a zero-copy buffer strategy, a network congestion suppression strategy, and a codec rate coordination strategy. Secondly, for the distributed wide area video surveillance system, a tracking optimization method based on multi-camera fusion is proposed. Finally, this paper constructs a Bayesian monitoring event modeling method based on genetic algorithm. Experimental results show that the optimized video surveillance system has basically stable delay, significantly reduced packet loss rate, and smooth video playback. This method can effectively realize the coordinated tracking of multiple cameras in a wide-area monitoring scenario, achieve high tracking and monitoring performance, and meet the requirements of smart campus construction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011951</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Cameras ; Classification algorithms ; Codec ; Computer Science ; Computer Science, Information Systems ; Engineering ; Engineering, Electrical & Electronic ; Genetic algorithms ; Internet of Things ; Monitoring ; Optimization ; Science & Technology ; Security management ; Smart Campus ; Strategy ; Streaming media ; Surveillance ; Target tracking ; Technology ; Telecommunications ; Tracking ; Video surveillance</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557770200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-14a4e5d9edd0cd996b13ffc43c6a7d43141482a0fdd408d5693a551b9d12bb353</citedby><cites>FETCH-LOGICAL-c408t-14a4e5d9edd0cd996b13ffc43c6a7d43141482a0fdd408d5693a551b9d12bb353</cites><orcidid>0000-0003-1761-5848 ; 0000-0001-7350-876X ; 0000-0003-4391-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149620$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,27637,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Zhou, Zhiqing</creatorcontrib><creatorcontrib>Yu, Heng</creatorcontrib><creatorcontrib>Shi, Hesheng</creatorcontrib><title>Optimization of wireless video surveillance system for smart campus based on Internet of Things</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>In order to strengthen school security and build a wireless smart campus, this article optimizes the existing wireless video surveillance system based on the Internet of Things. This paper first optimizes the surveillance quality in the video surveillance system, and proposes a zero-copy buffer strategy, a network congestion suppression strategy, and a codec rate coordination strategy. Secondly, for the distributed wide area video surveillance system, a tracking optimization method based on multi-camera fusion is proposed. Finally, this paper constructs a Bayesian monitoring event modeling method based on genetic algorithm. Experimental results show that the optimized video surveillance system has basically stable delay, significantly reduced packet loss rate, and smooth video playback. This method can effectively realize the coordinated tracking of multiple cameras in a wide-area monitoring scenario, achieve high tracking and monitoring performance, and meet the requirements of smart campus construction.</description><subject>Cameras</subject><subject>Classification algorithms</subject><subject>Codec</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Science & Technology</subject><subject>Security management</subject><subject>Smart Campus</subject><subject>Strategy</subject><subject>Streaming media</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Tracking</subject><subject>Video surveillance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9P3DAQxSPUSiDKJ-BiiWO1W_9PfEQRbVdC4gA9W449Bq-y8dZ2QPTT4yWIcmQutkbv9zzj1zTnBK8JwerHZd9f3d6uKaZ4zTAhSpCj5oQSqVZMMPnlw_24Oct5i2t1tSXak0bf7EvYhX-mhDih6NFTSDBCzugxOIgoz-kRwjiayQLKz7nADvmYUN6ZVJA1u_2c0WAyOFT5zVQgTVAORncPYbrP35qv3owZzt7O0-bPz6u7_vfq-ubXpr-8XlmOu7Ii3HAQToFz2Dql5ECY95YzK03rOCOc8I4a7J2reiekYkYIMihH6DDU1U6bzeLrotnqfQp1vmcdTdCvjZjudR042BE09cIISTGXXcuVGAbPPJWdaq3kvgVcvS4Wr32Kf2fIRW_jnKY6vqZccMlxS1RVsUVlU8w5gX9_lWB9CEYvwehDMPotmEp9X6gnGKLPNkD92HeyBiNE27aVqHVQd59X96G8ptjHeSoVPV_QAPAfUYSrujp7AeDOqj4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhou, Zhiqing</creator><creator>Yu, Heng</creator><creator>Shi, Hesheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1761-5848</orcidid><orcidid>https://orcid.org/0000-0001-7350-876X</orcidid><orcidid>https://orcid.org/0000-0003-4391-7233</orcidid></search><sort><creationdate>20200101</creationdate><title>Optimization of wireless video surveillance system for smart campus based on Internet of Things</title><author>Zhou, Zhiqing ; Yu, Heng ; Shi, Hesheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-14a4e5d9edd0cd996b13ffc43c6a7d43141482a0fdd408d5693a551b9d12bb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Classification algorithms</topic><topic>Codec</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Science & Technology</topic><topic>Security management</topic><topic>Smart Campus</topic><topic>Strategy</topic><topic>Streaming media</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Tracking</topic><topic>Video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhiqing</creatorcontrib><creatorcontrib>Yu, Heng</creatorcontrib><creatorcontrib>Shi, Hesheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhiqing</au><au>Yu, Heng</au><au>Shi, Hesheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of wireless video surveillance system for smart campus based on Internet of Things</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to strengthen school security and build a wireless smart campus, this article optimizes the existing wireless video surveillance system based on the Internet of Things. This paper first optimizes the surveillance quality in the video surveillance system, and proposes a zero-copy buffer strategy, a network congestion suppression strategy, and a codec rate coordination strategy. Secondly, for the distributed wide area video surveillance system, a tracking optimization method based on multi-camera fusion is proposed. Finally, this paper constructs a Bayesian monitoring event modeling method based on genetic algorithm. Experimental results show that the optimized video surveillance system has basically stable delay, significantly reduced packet loss rate, and smooth video playback. This method can effectively realize the coordinated tracking of multiple cameras in a wide-area monitoring scenario, achieve high tracking and monitoring performance, and meet the requirements of smart campus construction.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3011951</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1761-5848</orcidid><orcidid>https://orcid.org/0000-0001-7350-876X</orcidid><orcidid>https://orcid.org/0000-0003-4391-7233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454640719 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cameras Classification algorithms Codec Computer Science Computer Science, Information Systems Engineering Engineering, Electrical & Electronic Genetic algorithms Internet of Things Monitoring Optimization Science & Technology Security management Smart Campus Strategy Streaming media Surveillance Target tracking Technology Telecommunications Tracking Video surveillance |
title | Optimization of wireless video surveillance system for smart campus based on Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20wireless%20video%20surveillance%20system%20for%20smart%20campus%20based%20on%20Internet%20of%20Things&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Zhiqing&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011951&rft_dat=%3Cproquest_webof%3E2454640719%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454640719&rft_id=info:pmid/&rft_ieee_id=9149620&rft_doaj_id=oai_doaj_org_article_2f5a56204687495bbf3f26897c64f7e0&rfr_iscdi=true |