Multi-Label ECG Signal Classification Based on Ensemble Classifier
Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. M...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.117986-117996 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117996 |
---|---|
container_issue | |
container_start_page | 117986 |
container_title | IEEE access |
container_volume | 8 |
creator | Sun, Zhanquan Wang, Chaoli Zhao, Yangyang Yan, Chao |
description | Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification. |
doi_str_mv | 10.1109/ACCESS.2020.3004908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454614019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9125941</ieee_id><doaj_id>oai_doaj_org_article_f4cc9d7da3fa4c7fbf4e6ba757e72e08</doaj_id><sourcerecordid>2454614019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmEuQXcNnE82I_t-0RNogkGA_ouWm7LSlZWGyXg__e4hLiXGby8t6bmQfAFMEZQlC-zOt6ud3OMMRwRiCkEoo7MMKokiVhpLr_Nz-CSUp7mEtkiPERWLyf2z6UG21cWyzrVbENu6Nui7rVKQUfrO5DdywWOrmmyMPymNzBtO5GcPEJPHjdJje59jH4el1-1m_l5mO1rueb0lIo-rLxUAjisUeGUF8JS6zDmuEKMc7zcVgKIoTwleeGGIIZ1aRhJsOSIkgJGYP14Nt0eq9OMRx0_FGdDuoP6OJO6dgH2zrlqbWy4Y0mXlPLvfHUVUZzxh3HDors9Tx4nWL3fXapV_vuHPPjSWHKaIUoRDKzyMCysUspOn_biqC6ZK-G7NUle3XNPqumgyo4524KiTDLj5BfHPZ9Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454614019</pqid></control><display><type>article</type><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</creator><creatorcontrib>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</creatorcontrib><description>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3004908</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic classification ; Cardiovascular diseases ; Classifiers ; Electrocardiogram ; Electrocardiography ; ensemble classification ; Feature extraction ; Heart ; multi-label classification ; mutual information ; Pattern classification ; Signal classification ; Sun ; Support vector machines</subject><ispartof>IEEE access, 2020, Vol.8, p.117986-117996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</citedby><cites>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</cites><orcidid>0000-0002-6911-6437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9125941$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Zhao, Yangyang</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</description><subject>Automatic classification</subject><subject>Cardiovascular diseases</subject><subject>Classifiers</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>ensemble classification</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>multi-label classification</subject><subject>mutual information</subject><subject>Pattern classification</subject><subject>Signal classification</subject><subject>Sun</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQbYwmEuQXcNnE82I_t-0RNogkGA_ouWm7LSlZWGyXg__e4hLiXGby8t6bmQfAFMEZQlC-zOt6ud3OMMRwRiCkEoo7MMKokiVhpLr_Nz-CSUp7mEtkiPERWLyf2z6UG21cWyzrVbENu6Nui7rVKQUfrO5DdywWOrmmyMPymNzBtO5GcPEJPHjdJje59jH4el1-1m_l5mO1rueb0lIo-rLxUAjisUeGUF8JS6zDmuEKMc7zcVgKIoTwleeGGIIZ1aRhJsOSIkgJGYP14Nt0eq9OMRx0_FGdDuoP6OJO6dgH2zrlqbWy4Y0mXlPLvfHUVUZzxh3HDors9Tx4nWL3fXapV_vuHPPjSWHKaIUoRDKzyMCysUspOn_biqC6ZK-G7NUle3XNPqumgyo4524KiTDLj5BfHPZ9Uw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Zhanquan</creator><creator>Wang, Chaoli</creator><creator>Zhao, Yangyang</creator><creator>Yan, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6911-6437</orcidid></search><sort><creationdate>2020</creationdate><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><author>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic classification</topic><topic>Cardiovascular diseases</topic><topic>Classifiers</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>ensemble classification</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>multi-label classification</topic><topic>mutual information</topic><topic>Pattern classification</topic><topic>Signal classification</topic><topic>Sun</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Zhao, Yangyang</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhanquan</au><au>Wang, Chaoli</au><au>Zhao, Yangyang</au><au>Yan, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Label ECG Signal Classification Based on Ensemble Classifier</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>117986</spage><epage>117996</epage><pages>117986-117996</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3004908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6911-6437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.117986-117996 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454614019 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Automatic classification Cardiovascular diseases Classifiers Electrocardiogram Electrocardiography ensemble classification Feature extraction Heart multi-label classification mutual information Pattern classification Signal classification Sun Support vector machines |
title | Multi-Label ECG Signal Classification Based on Ensemble Classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Label%20ECG%20Signal%20Classification%20Based%20on%20Ensemble%20Classifier&rft.jtitle=IEEE%20access&rft.au=Sun,%20Zhanquan&rft.date=2020&rft.volume=8&rft.spage=117986&rft.epage=117996&rft.pages=117986-117996&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3004908&rft_dat=%3Cproquest_ieee_%3E2454614019%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454614019&rft_id=info:pmid/&rft_ieee_id=9125941&rft_doaj_id=oai_doaj_org_article_f4cc9d7da3fa4c7fbf4e6ba757e72e08&rfr_iscdi=true |