Multi-Label ECG Signal Classification Based on Ensemble Classifier

Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.117986-117996
Hauptverfasser: Sun, Zhanquan, Wang, Chaoli, Zhao, Yangyang, Yan, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117996
container_issue
container_start_page 117986
container_title IEEE access
container_volume 8
creator Sun, Zhanquan
Wang, Chaoli
Zhao, Yangyang
Yan, Chao
description Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.
doi_str_mv 10.1109/ACCESS.2020.3004908
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454614019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9125941</ieee_id><doaj_id>oai_doaj_org_article_f4cc9d7da3fa4c7fbf4e6ba757e72e08</doaj_id><sourcerecordid>2454614019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmEuQXcNnE82I_t-0RNogkGA_ouWm7LSlZWGyXg__e4hLiXGby8t6bmQfAFMEZQlC-zOt6ud3OMMRwRiCkEoo7MMKokiVhpLr_Nz-CSUp7mEtkiPERWLyf2z6UG21cWyzrVbENu6Nui7rVKQUfrO5DdywWOrmmyMPymNzBtO5GcPEJPHjdJje59jH4el1-1m_l5mO1rueb0lIo-rLxUAjisUeGUF8JS6zDmuEKMc7zcVgKIoTwleeGGIIZ1aRhJsOSIkgJGYP14Nt0eq9OMRx0_FGdDuoP6OJO6dgH2zrlqbWy4Y0mXlPLvfHUVUZzxh3HDors9Tx4nWL3fXapV_vuHPPjSWHKaIUoRDKzyMCysUspOn_biqC6ZK-G7NUle3XNPqumgyo4524KiTDLj5BfHPZ9Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454614019</pqid></control><display><type>article</type><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</creator><creatorcontrib>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</creatorcontrib><description>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3004908</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic classification ; Cardiovascular diseases ; Classifiers ; Electrocardiogram ; Electrocardiography ; ensemble classification ; Feature extraction ; Heart ; multi-label classification ; mutual information ; Pattern classification ; Signal classification ; Sun ; Support vector machines</subject><ispartof>IEEE access, 2020, Vol.8, p.117986-117996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</citedby><cites>FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</cites><orcidid>0000-0002-6911-6437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9125941$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Zhao, Yangyang</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</description><subject>Automatic classification</subject><subject>Cardiovascular diseases</subject><subject>Classifiers</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>ensemble classification</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>multi-label classification</subject><subject>mutual information</subject><subject>Pattern classification</subject><subject>Signal classification</subject><subject>Sun</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQbYwmEuQXcNnE82I_t-0RNogkGA_ouWm7LSlZWGyXg__e4hLiXGby8t6bmQfAFMEZQlC-zOt6ud3OMMRwRiCkEoo7MMKokiVhpLr_Nz-CSUp7mEtkiPERWLyf2z6UG21cWyzrVbENu6Nui7rVKQUfrO5DdywWOrmmyMPymNzBtO5GcPEJPHjdJje59jH4el1-1m_l5mO1rueb0lIo-rLxUAjisUeGUF8JS6zDmuEKMc7zcVgKIoTwleeGGIIZ1aRhJsOSIkgJGYP14Nt0eq9OMRx0_FGdDuoP6OJO6dgH2zrlqbWy4Y0mXlPLvfHUVUZzxh3HDors9Tx4nWL3fXapV_vuHPPjSWHKaIUoRDKzyMCysUspOn_biqC6ZK-G7NUle3XNPqumgyo4524KiTDLj5BfHPZ9Uw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Zhanquan</creator><creator>Wang, Chaoli</creator><creator>Zhao, Yangyang</creator><creator>Yan, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6911-6437</orcidid></search><sort><creationdate>2020</creationdate><title>Multi-Label ECG Signal Classification Based on Ensemble Classifier</title><author>Sun, Zhanquan ; Wang, Chaoli ; Zhao, Yangyang ; Yan, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-df0883f2f1b34f68c3ce2a52615773532983888f6f7b3b3254a3d5b2989410433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic classification</topic><topic>Cardiovascular diseases</topic><topic>Classifiers</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>ensemble classification</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>multi-label classification</topic><topic>mutual information</topic><topic>Pattern classification</topic><topic>Signal classification</topic><topic>Sun</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Zhao, Yangyang</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhanquan</au><au>Wang, Chaoli</au><au>Zhao, Yangyang</au><au>Yan, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Label ECG Signal Classification Based on Ensemble Classifier</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>117986</spage><epage>117996</epage><pages>117986-117996</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electrocardiogram (ECG) has been proved to be the most common and effective approach to investigate the cardiovascular disease because that it is simple, non-invasive and low cost. ECG signal automatic classification is a popular research topic and some efficient research work has been done on it. Most of current research work focuses on single ECG label classification, i.e. one ECG signal record corresponds to one label. In practice, one ECG signal usually embraces several cardiovascular diseases at the same time. It is more important to study multi-label ECG signal classification. To our knowledge, few research works have been done on the research topic. To resolve the multi-label ECG signal classification problems, we propose a novel ensemble multi-label classification model in this paper. The model combines several multi-label classification methods to generate a high performance classifier. Mutual information is used to measure the weight of each classifier. At last the ensemble multi-label classification model is used to analyze a clinic ECG signal dataset. The analysis results show that the overall classification performance is improved. It provides a feasible analysis method for multi-label ECG signal automatic classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3004908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6911-6437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.117986-117996
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454614019
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automatic classification
Cardiovascular diseases
Classifiers
Electrocardiogram
Electrocardiography
ensemble classification
Feature extraction
Heart
multi-label classification
mutual information
Pattern classification
Signal classification
Sun
Support vector machines
title Multi-Label ECG Signal Classification Based on Ensemble Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Label%20ECG%20Signal%20Classification%20Based%20on%20Ensemble%20Classifier&rft.jtitle=IEEE%20access&rft.au=Sun,%20Zhanquan&rft.date=2020&rft.volume=8&rft.spage=117986&rft.epage=117996&rft.pages=117986-117996&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3004908&rft_dat=%3Cproquest_ieee_%3E2454614019%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454614019&rft_id=info:pmid/&rft_ieee_id=9125941&rft_doaj_id=oai_doaj_org_article_f4cc9d7da3fa4c7fbf4e6ba757e72e08&rfr_iscdi=true