Flower classification with modified multimodal convolutional neural networks

•We constructed a convolutional neural network model to use image and text together.•We proposed new flower classification algorithm using a multi-view learning method.•We proposed multimodal feature extraction framework in learned expression. The new multi-view learning algorithm is proposed by mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2020-11, Vol.159, p.113455, Article 113455
Hauptverfasser: Bae, Kang Il, Park, Junghoon, Lee, Jongga, Lee, Yungseop, Lim, Changwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113455
container_title Expert systems with applications
container_volume 159
creator Bae, Kang Il
Park, Junghoon
Lee, Jongga
Lee, Yungseop
Lim, Changwon
description •We constructed a convolutional neural network model to use image and text together.•We proposed new flower classification algorithm using a multi-view learning method.•We proposed multimodal feature extraction framework in learned expression. The new multi-view learning algorithm is proposed by modifying an existing method, the multimodal convolutional neural networks originally developed for image-text matching (modified m-CNN), to use not only images but also texts for classification. Firstly, pre-trained CNN and word embedding models are applied to extract visual features and represent each word in a text as a vector, respectively. Secondly, textual features are extracted by employing a CNN model for text data. Finally, pairs of features extracted through the text and image CNNs are concatenated and input to convolutional layer which can obtain a better learn of the important feature information in the integrated representation of image and text. Features extracted from the convolutional layer are input to a fully connected layer to perform classification. Experimental results demonstrate that the proposed algorithm can obtain superior performance compared with other data fusion methods for flower classification using data of images of flowers and their Korean descriptions. More specifically, the accuracy of the proposed algorithm is 10.1% and 14.5% higher than m-CNN and multimodal recurrent neural networks algorithms, respectively. The proposed method can significantly improve the performance of flower classification. The code and related data are publicly available via our GitHub repository.
doi_str_mv 10.1016/j.eswa.2020.113455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454569687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420302797</els_id><sourcerecordid>2454569687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a937bb57121b56c288adb408a531c27ab66b912ea6d3f9cc150c6a97bdf2e58f3</originalsourceid><addsrcrecordid>eNp9UEtLxDAYDKLguvoHPBU8d82jSVrwIosvWPCi55BXMbXbrEm6xX9vaj17GmaY-ZhvALhGcIMgYrfdxsZJbjDEWUCkovQErFDNScl4Q07BCjaUlxXi1Tm4iLGDEHEI-QrsHns_2VDoXsboWqdlcn4oJpc-ir03WbGm2I99cpnJvtB-OPp-nE2ZDXYMv5AmHz7jJThrZR_t1R-uwfvjw9v2udy9Pr1s73elJrhOpWwIV4pyhJGiTOO6lkZVsJaUII25VIypBmErmSFtozWiUDPZcGVabGndkjW4We4egv8abUyi82PIhaLAFa0oa1h-fQ3w4tLBxxhsKw7B7WX4FgiKeTXRiXk1Ma8mltVy6G4J2dz_6GwQUTs7aGtcsDoJ491_8R-AjXc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454569687</pqid></control><display><type>article</type><title>Flower classification with modified multimodal convolutional neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bae, Kang Il ; Park, Junghoon ; Lee, Jongga ; Lee, Yungseop ; Lim, Changwon</creator><creatorcontrib>Bae, Kang Il ; Park, Junghoon ; Lee, Jongga ; Lee, Yungseop ; Lim, Changwon</creatorcontrib><description>•We constructed a convolutional neural network model to use image and text together.•We proposed new flower classification algorithm using a multi-view learning method.•We proposed multimodal feature extraction framework in learned expression. The new multi-view learning algorithm is proposed by modifying an existing method, the multimodal convolutional neural networks originally developed for image-text matching (modified m-CNN), to use not only images but also texts for classification. Firstly, pre-trained CNN and word embedding models are applied to extract visual features and represent each word in a text as a vector, respectively. Secondly, textual features are extracted by employing a CNN model for text data. Finally, pairs of features extracted through the text and image CNNs are concatenated and input to convolutional layer which can obtain a better learn of the important feature information in the integrated representation of image and text. Features extracted from the convolutional layer are input to a fully connected layer to perform classification. Experimental results demonstrate that the proposed algorithm can obtain superior performance compared with other data fusion methods for flower classification using data of images of flowers and their Korean descriptions. More specifically, the accuracy of the proposed algorithm is 10.1% and 14.5% higher than m-CNN and multimodal recurrent neural networks algorithms, respectively. The proposed method can significantly improve the performance of flower classification. The code and related data are publicly available via our GitHub repository.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.113455</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Data fusion ; Data integration ; Deep learning ; Feature extraction ; Flowers ; Image classification ; Machine learning ; Multi-view learning ; Neural networks ; Performance enhancement ; Recurrent neural networks ; Text</subject><ispartof>Expert systems with applications, 2020-11, Vol.159, p.113455, Article 113455</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a937bb57121b56c288adb408a531c27ab66b912ea6d3f9cc150c6a97bdf2e58f3</citedby><cites>FETCH-LOGICAL-c328t-a937bb57121b56c288adb408a531c27ab66b912ea6d3f9cc150c6a97bdf2e58f3</cites><orcidid>0000-0002-6792-9389 ; 0000-0002-3182-8420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417420302797$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bae, Kang Il</creatorcontrib><creatorcontrib>Park, Junghoon</creatorcontrib><creatorcontrib>Lee, Jongga</creatorcontrib><creatorcontrib>Lee, Yungseop</creatorcontrib><creatorcontrib>Lim, Changwon</creatorcontrib><title>Flower classification with modified multimodal convolutional neural networks</title><title>Expert systems with applications</title><description>•We constructed a convolutional neural network model to use image and text together.•We proposed new flower classification algorithm using a multi-view learning method.•We proposed multimodal feature extraction framework in learned expression. The new multi-view learning algorithm is proposed by modifying an existing method, the multimodal convolutional neural networks originally developed for image-text matching (modified m-CNN), to use not only images but also texts for classification. Firstly, pre-trained CNN and word embedding models are applied to extract visual features and represent each word in a text as a vector, respectively. Secondly, textual features are extracted by employing a CNN model for text data. Finally, pairs of features extracted through the text and image CNNs are concatenated and input to convolutional layer which can obtain a better learn of the important feature information in the integrated representation of image and text. Features extracted from the convolutional layer are input to a fully connected layer to perform classification. Experimental results demonstrate that the proposed algorithm can obtain superior performance compared with other data fusion methods for flower classification using data of images of flowers and their Korean descriptions. More specifically, the accuracy of the proposed algorithm is 10.1% and 14.5% higher than m-CNN and multimodal recurrent neural networks algorithms, respectively. The proposed method can significantly improve the performance of flower classification. The code and related data are publicly available via our GitHub repository.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Flowers</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Multi-view learning</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Recurrent neural networks</subject><subject>Text</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAYDKLguvoHPBU8d82jSVrwIosvWPCi55BXMbXbrEm6xX9vaj17GmaY-ZhvALhGcIMgYrfdxsZJbjDEWUCkovQErFDNScl4Q07BCjaUlxXi1Tm4iLGDEHEI-QrsHns_2VDoXsboWqdlcn4oJpc-ir03WbGm2I99cpnJvtB-OPp-nE2ZDXYMv5AmHz7jJThrZR_t1R-uwfvjw9v2udy9Pr1s73elJrhOpWwIV4pyhJGiTOO6lkZVsJaUII25VIypBmErmSFtozWiUDPZcGVabGndkjW4We4egv8abUyi82PIhaLAFa0oa1h-fQ3w4tLBxxhsKw7B7WX4FgiKeTXRiXk1Ma8mltVy6G4J2dz_6GwQUTs7aGtcsDoJ491_8R-AjXc3</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Bae, Kang Il</creator><creator>Park, Junghoon</creator><creator>Lee, Jongga</creator><creator>Lee, Yungseop</creator><creator>Lim, Changwon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6792-9389</orcidid><orcidid>https://orcid.org/0000-0002-3182-8420</orcidid></search><sort><creationdate>20201130</creationdate><title>Flower classification with modified multimodal convolutional neural networks</title><author>Bae, Kang Il ; Park, Junghoon ; Lee, Jongga ; Lee, Yungseop ; Lim, Changwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a937bb57121b56c288adb408a531c27ab66b912ea6d3f9cc150c6a97bdf2e58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Flowers</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Multi-view learning</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Recurrent neural networks</topic><topic>Text</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Kang Il</creatorcontrib><creatorcontrib>Park, Junghoon</creatorcontrib><creatorcontrib>Lee, Jongga</creatorcontrib><creatorcontrib>Lee, Yungseop</creatorcontrib><creatorcontrib>Lim, Changwon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Kang Il</au><au>Park, Junghoon</au><au>Lee, Jongga</au><au>Lee, Yungseop</au><au>Lim, Changwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flower classification with modified multimodal convolutional neural networks</atitle><jtitle>Expert systems with applications</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>159</volume><spage>113455</spage><pages>113455-</pages><artnum>113455</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•We constructed a convolutional neural network model to use image and text together.•We proposed new flower classification algorithm using a multi-view learning method.•We proposed multimodal feature extraction framework in learned expression. The new multi-view learning algorithm is proposed by modifying an existing method, the multimodal convolutional neural networks originally developed for image-text matching (modified m-CNN), to use not only images but also texts for classification. Firstly, pre-trained CNN and word embedding models are applied to extract visual features and represent each word in a text as a vector, respectively. Secondly, textual features are extracted by employing a CNN model for text data. Finally, pairs of features extracted through the text and image CNNs are concatenated and input to convolutional layer which can obtain a better learn of the important feature information in the integrated representation of image and text. Features extracted from the convolutional layer are input to a fully connected layer to perform classification. Experimental results demonstrate that the proposed algorithm can obtain superior performance compared with other data fusion methods for flower classification using data of images of flowers and their Korean descriptions. More specifically, the accuracy of the proposed algorithm is 10.1% and 14.5% higher than m-CNN and multimodal recurrent neural networks algorithms, respectively. The proposed method can significantly improve the performance of flower classification. The code and related data are publicly available via our GitHub repository.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.113455</doi><orcidid>https://orcid.org/0000-0002-6792-9389</orcidid><orcidid>https://orcid.org/0000-0002-3182-8420</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2020-11, Vol.159, p.113455, Article 113455
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2454569687
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial neural networks
Classification
Data fusion
Data integration
Deep learning
Feature extraction
Flowers
Image classification
Machine learning
Multi-view learning
Neural networks
Performance enhancement
Recurrent neural networks
Text
title Flower classification with modified multimodal convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flower%20classification%20with%20modified%20multimodal%20convolutional%20neural%20networks&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Bae,%20Kang%20Il&rft.date=2020-11-30&rft.volume=159&rft.spage=113455&rft.pages=113455-&rft.artnum=113455&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.113455&rft_dat=%3Cproquest_cross%3E2454569687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454569687&rft_id=info:pmid/&rft_els_id=S0957417420302797&rfr_iscdi=true