Rapid Domain Adaptation for Machine Translation with Monolingual Data

One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Mahdieh, Mahdis, Mia Xu Chen, Cao, Yuan, Firat, Orhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mahdieh, Mahdis
Mia Xu Chen
Cao, Yuan
Firat, Orhan
description One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2454521178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454521178</sourcerecordid><originalsourceid>FETCH-proquest_journals_24545211783</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW9G5LXyONXnwJ3-WSmpN1Z9uk3y-oD-jpwDlnxSIQIksKCbBhsfdTmqZwyEEpEbHqirPueGkfqIkfO5wDBm2JD9bxGm-jpp43Dsmbr3_pMPLakjWa7gsaXmLAHVsPaHwf_7hl-3PVnC7J7Oxz6X1oJ7s4-qQWpJIKsiwvxH_XG1gtOqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454521178</pqid></control><display><type>article</type><title>Rapid Domain Adaptation for Machine Translation with Monolingual Data</title><source>Free E- Journals</source><creator>Mahdieh, Mahdis ; Mia Xu Chen ; Cao, Yuan ; Firat, Orhan</creator><creatorcontrib>Mahdieh, Mahdis ; Mia Xu Chen ; Cao, Yuan ; Firat, Orhan</creatorcontrib><description>One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Domains ; Languages ; Machine translation</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mahdieh, Mahdis</creatorcontrib><creatorcontrib>Mia Xu Chen</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><title>Rapid Domain Adaptation for Machine Translation with Monolingual Data</title><title>arXiv.org</title><description>One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.</description><subject>Adaptation</subject><subject>Domains</subject><subject>Languages</subject><subject>Machine translation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW9G5LXyONXnwJ3-WSmpN1Z9uk3y-oD-jpwDlnxSIQIksKCbBhsfdTmqZwyEEpEbHqirPueGkfqIkfO5wDBm2JD9bxGm-jpp43Dsmbr3_pMPLakjWa7gsaXmLAHVsPaHwf_7hl-3PVnC7J7Oxz6X1oJ7s4-qQWpJIKsiwvxH_XG1gtOqs</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Mahdieh, Mahdis</creator><creator>Mia Xu Chen</creator><creator>Cao, Yuan</creator><creator>Firat, Orhan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201023</creationdate><title>Rapid Domain Adaptation for Machine Translation with Monolingual Data</title><author>Mahdieh, Mahdis ; Mia Xu Chen ; Cao, Yuan ; Firat, Orhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24545211783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Domains</topic><topic>Languages</topic><topic>Machine translation</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahdieh, Mahdis</creatorcontrib><creatorcontrib>Mia Xu Chen</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdieh, Mahdis</au><au>Mia Xu Chen</au><au>Cao, Yuan</au><au>Firat, Orhan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rapid Domain Adaptation for Machine Translation with Monolingual Data</atitle><jtitle>arXiv.org</jtitle><date>2020-10-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2454521178
source Free E- Journals
subjects Adaptation
Domains
Languages
Machine translation
title Rapid Domain Adaptation for Machine Translation with Monolingual Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rapid%20Domain%20Adaptation%20for%20Machine%20Translation%20with%20Monolingual%20Data&rft.jtitle=arXiv.org&rft.au=Mahdieh,%20Mahdis&rft.date=2020-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2454521178%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454521178&rft_id=info:pmid/&rfr_iscdi=true