Relative Hyperbolicity of Graphical Small Cancellation Groups

A piece of a labelled graph \(\Gamma\) defined by D. Gruber is a labelled path that embeds into \(\Gamma\) in two essentially different ways. We prove that graphical \(Gr'(\frac{1}{6})\) small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
1. Verfasser: Han, Suzhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Han, Suzhen
description A piece of a labelled graph \(\Gamma\) defined by D. Gruber is a labelled path that embeds into \(\Gamma\) in two essentially different ways. We prove that graphical \(Gr'(\frac{1}{6})\) small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph \(\Gamma\), if and only if the pieces of \(\Gamma\) are uniformly bounded. This implies the relative hyperbolicity by a result of C. Druţu, D. Osin and M. Sapir.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2454518691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454518691</sourcerecordid><originalsourceid>FETCH-proquest_journals_24545186913</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDUrNSSzJLEtV8KgsSC1Kys_JTM4sqVTIT1NwL0osyMhMTsxRCM5NzMlRcE7MS07NAanOzwNK5pcWFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRiamJqaGFmaWhMXGqAJLwOCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454518691</pqid></control><display><type>article</type><title>Relative Hyperbolicity of Graphical Small Cancellation Groups</title><source>Free E- Journals</source><creator>Han, Suzhen</creator><creatorcontrib>Han, Suzhen</creatorcontrib><description>A piece of a labelled graph \(\Gamma\) defined by D. Gruber is a labelled path that embeds into \(\Gamma\) in two essentially different ways. We prove that graphical \(Gr'(\frac{1}{6})\) small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph \(\Gamma\), if and only if the pieces of \(\Gamma\) are uniformly bounded. This implies the relative hyperbolicity by a result of C. Druţu, D. Osin and M. Sapir.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Han, Suzhen</creatorcontrib><title>Relative Hyperbolicity of Graphical Small Cancellation Groups</title><title>arXiv.org</title><description>A piece of a labelled graph \(\Gamma\) defined by D. Gruber is a labelled path that embeds into \(\Gamma\) in two essentially different ways. We prove that graphical \(Gr'(\frac{1}{6})\) small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph \(\Gamma\), if and only if the pieces of \(\Gamma\) are uniformly bounded. This implies the relative hyperbolicity by a result of C. Druţu, D. Osin and M. Sapir.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDUrNSSzJLEtV8KgsSC1Kys_JTM4sqVTIT1NwL0osyMhMTsxRCM5NzMlRcE7MS07NAanOzwNK5pcWFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRiamJqaGFmaWhMXGqAJLwOCU</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Han, Suzhen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201112</creationdate><title>Relative Hyperbolicity of Graphical Small Cancellation Groups</title><author>Han, Suzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24545186913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Han, Suzhen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Suzhen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Relative Hyperbolicity of Graphical Small Cancellation Groups</atitle><jtitle>arXiv.org</jtitle><date>2020-11-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>A piece of a labelled graph \(\Gamma\) defined by D. Gruber is a labelled path that embeds into \(\Gamma\) in two essentially different ways. We prove that graphical \(Gr'(\frac{1}{6})\) small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph \(\Gamma\), if and only if the pieces of \(\Gamma\) are uniformly bounded. This implies the relative hyperbolicity by a result of C. Druţu, D. Osin and M. Sapir.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2454518691
source Free E- Journals
title Relative Hyperbolicity of Graphical Small Cancellation Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Relative%20Hyperbolicity%20of%20Graphical%20Small%20Cancellation%20Groups&rft.jtitle=arXiv.org&rft.au=Han,%20Suzhen&rft.date=2020-11-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2454518691%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454518691&rft_id=info:pmid/&rfr_iscdi=true