A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads

•A load-dependent dynamic hysteresis model for PAMs is proposed.•The model is developed based on UPI operators and a NARMAX structure.•The inverse model is designed to predict the mechanical load exerted to the PAM. The pneumatic artificial muscle (PAM) actuated with different input frequencies and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2021-02, Vol.148, p.107133, Article 107133
Hauptverfasser: Zhang, Ying, Liu, Hongshuai, Ma, Tianhua, Hao, Lina, Li, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107133
container_title Mechanical systems and signal processing
container_volume 148
creator Zhang, Ying
Liu, Hongshuai
Ma, Tianhua
Hao, Lina
Li, Zhi
description •A load-dependent dynamic hysteresis model for PAMs is proposed.•The model is developed based on UPI operators and a NARMAX structure.•The inverse model is designed to predict the mechanical load exerted to the PAM. The pneumatic artificial muscle (PAM) actuated with different input frequencies and mechanical loads suffers from complex dynamic asymmetric hysteresis behaviors, leading to inaccurate positioning performance of the PAM. In order to predict the dynamic hysteresis behaviors with both rate-dependent and load-dependent effects, a comprehensive dynamic model is developed which includes two components: the first component is used to describe the rate-independent hysteresis nonlinearity with un-parallel Prandtl-Ishlinskii operators, and the cascaded second component is applied to represent the load-dependent dynamic behavior of the PAM using a nonlinear autoregressive moving average with exogenous input model implemented by recurrent fuzzy neural networks. To validate the proposed model, experiments are conducted with different input frequencies and mechanical loads. The experimental results demonstrate that the dynamic model shows a good agreement with the dynamic behaviors of the PAM under input conditions with different mechanical loads and input frequencies. In addition, the inverse model is designed to predict the mechanical load exerted to the PAM, and shows good prediction ability.
doi_str_mv 10.1016/j.ymssp.2020.107133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454516940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020305197</els_id><sourcerecordid>2454516940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e3b5098d66e4b14f566e22e20a8054138cf166ffbfa849cfe4d2e8f5c925b2563</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gsMaf4I3GTgaGq-JIqscBsOfaZOkqcYCeVKv48LmFm8un0Pue7B6FbSlaUUHHfrI5djMOKEXbqrCnnZ2hBSSUyyqg4RwtSlmXG2ZpcoqsYG0JIlROxQN8brPtuCLAHH90BsDl61TmNu95Ai20f8OBh6tSYeiqMzjrtVIu7KeoWYoITZiA4_4mNsxYC-BE7P0wjtgG-JvDapZzyBneg98o7nfC2VyZeowur2gg3f-8SfTw9vm9fst3b8-t2s8s053TMgNcFqUojBOQ1zW2RCsaAEVWSIqe81JYKYW1tVZlX2kJuGJS20BUralYIvkR389wh9GmhOMqmn4JPX0qWF3lBRXKRUnxO6dDHGMDKIbhOhaOkRJ4sy0b-WpYny3K2nKiHmYJ0wMFBkDHd6zUYF0CP0vTuX_4HC8qJpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454516940</pqid></control><display><type>article</type><title>A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Ying ; Liu, Hongshuai ; Ma, Tianhua ; Hao, Lina ; Li, Zhi</creator><creatorcontrib>Zhang, Ying ; Liu, Hongshuai ; Ma, Tianhua ; Hao, Lina ; Li, Zhi</creatorcontrib><description>•A load-dependent dynamic hysteresis model for PAMs is proposed.•The model is developed based on UPI operators and a NARMAX structure.•The inverse model is designed to predict the mechanical load exerted to the PAM. The pneumatic artificial muscle (PAM) actuated with different input frequencies and mechanical loads suffers from complex dynamic asymmetric hysteresis behaviors, leading to inaccurate positioning performance of the PAM. In order to predict the dynamic hysteresis behaviors with both rate-dependent and load-dependent effects, a comprehensive dynamic model is developed which includes two components: the first component is used to describe the rate-independent hysteresis nonlinearity with un-parallel Prandtl-Ishlinskii operators, and the cascaded second component is applied to represent the load-dependent dynamic behavior of the PAM using a nonlinear autoregressive moving average with exogenous input model implemented by recurrent fuzzy neural networks. To validate the proposed model, experiments are conducted with different input frequencies and mechanical loads. The experimental results demonstrate that the dynamic model shows a good agreement with the dynamic behaviors of the PAM under input conditions with different mechanical loads and input frequencies. In addition, the inverse model is designed to predict the mechanical load exerted to the PAM, and shows good prediction ability.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.107133</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Artificial muscles ; Artificial neural networks ; Asymmetric hysteresis ; Autoregressive moving average ; Autoregressive moving-average models ; Dynamic model ; Dynamic models ; Fuzzy logic ; Hysteresis ; Load ; Load dependency ; Loads (forces) ; Neural networks ; Nonlinearity ; Pneumatic artificial muscles ; Rate dependency</subject><ispartof>Mechanical systems and signal processing, 2021-02, Vol.148, p.107133, Article 107133</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e3b5098d66e4b14f566e22e20a8054138cf166ffbfa849cfe4d2e8f5c925b2563</citedby><cites>FETCH-LOGICAL-c331t-e3b5098d66e4b14f566e22e20a8054138cf166ffbfa849cfe4d2e8f5c925b2563</cites><orcidid>0000-0001-8791-2253 ; 0000-0002-7560-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327020305197$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Hongshuai</creatorcontrib><creatorcontrib>Ma, Tianhua</creatorcontrib><creatorcontrib>Hao, Lina</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><title>A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads</title><title>Mechanical systems and signal processing</title><description>•A load-dependent dynamic hysteresis model for PAMs is proposed.•The model is developed based on UPI operators and a NARMAX structure.•The inverse model is designed to predict the mechanical load exerted to the PAM. The pneumatic artificial muscle (PAM) actuated with different input frequencies and mechanical loads suffers from complex dynamic asymmetric hysteresis behaviors, leading to inaccurate positioning performance of the PAM. In order to predict the dynamic hysteresis behaviors with both rate-dependent and load-dependent effects, a comprehensive dynamic model is developed which includes two components: the first component is used to describe the rate-independent hysteresis nonlinearity with un-parallel Prandtl-Ishlinskii operators, and the cascaded second component is applied to represent the load-dependent dynamic behavior of the PAM using a nonlinear autoregressive moving average with exogenous input model implemented by recurrent fuzzy neural networks. To validate the proposed model, experiments are conducted with different input frequencies and mechanical loads. The experimental results demonstrate that the dynamic model shows a good agreement with the dynamic behaviors of the PAM under input conditions with different mechanical loads and input frequencies. In addition, the inverse model is designed to predict the mechanical load exerted to the PAM, and shows good prediction ability.</description><subject>Artificial muscles</subject><subject>Artificial neural networks</subject><subject>Asymmetric hysteresis</subject><subject>Autoregressive moving average</subject><subject>Autoregressive moving-average models</subject><subject>Dynamic model</subject><subject>Dynamic models</subject><subject>Fuzzy logic</subject><subject>Hysteresis</subject><subject>Load</subject><subject>Load dependency</subject><subject>Loads (forces)</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Pneumatic artificial muscles</subject><subject>Rate dependency</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gsMaf4I3GTgaGq-JIqscBsOfaZOkqcYCeVKv48LmFm8un0Pue7B6FbSlaUUHHfrI5djMOKEXbqrCnnZ2hBSSUyyqg4RwtSlmXG2ZpcoqsYG0JIlROxQN8brPtuCLAHH90BsDl61TmNu95Ai20f8OBh6tSYeiqMzjrtVIu7KeoWYoITZiA4_4mNsxYC-BE7P0wjtgG-JvDapZzyBneg98o7nfC2VyZeowur2gg3f-8SfTw9vm9fst3b8-t2s8s053TMgNcFqUojBOQ1zW2RCsaAEVWSIqe81JYKYW1tVZlX2kJuGJS20BUralYIvkR389wh9GmhOMqmn4JPX0qWF3lBRXKRUnxO6dDHGMDKIbhOhaOkRJ4sy0b-WpYny3K2nKiHmYJ0wMFBkDHd6zUYF0CP0vTuX_4HC8qJpQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Ying</creator><creator>Liu, Hongshuai</creator><creator>Ma, Tianhua</creator><creator>Hao, Lina</creator><creator>Li, Zhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8791-2253</orcidid><orcidid>https://orcid.org/0000-0002-7560-9764</orcidid></search><sort><creationdate>20210201</creationdate><title>A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads</title><author>Zhang, Ying ; Liu, Hongshuai ; Ma, Tianhua ; Hao, Lina ; Li, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e3b5098d66e4b14f566e22e20a8054138cf166ffbfa849cfe4d2e8f5c925b2563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial muscles</topic><topic>Artificial neural networks</topic><topic>Asymmetric hysteresis</topic><topic>Autoregressive moving average</topic><topic>Autoregressive moving-average models</topic><topic>Dynamic model</topic><topic>Dynamic models</topic><topic>Fuzzy logic</topic><topic>Hysteresis</topic><topic>Load</topic><topic>Load dependency</topic><topic>Loads (forces)</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Pneumatic artificial muscles</topic><topic>Rate dependency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Hongshuai</creatorcontrib><creatorcontrib>Ma, Tianhua</creatorcontrib><creatorcontrib>Hao, Lina</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Liu, Hongshuai</au><au>Ma, Tianhua</au><au>Hao, Lina</au><au>Li, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>148</volume><spage>107133</spage><pages>107133-</pages><artnum>107133</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A load-dependent dynamic hysteresis model for PAMs is proposed.•The model is developed based on UPI operators and a NARMAX structure.•The inverse model is designed to predict the mechanical load exerted to the PAM. The pneumatic artificial muscle (PAM) actuated with different input frequencies and mechanical loads suffers from complex dynamic asymmetric hysteresis behaviors, leading to inaccurate positioning performance of the PAM. In order to predict the dynamic hysteresis behaviors with both rate-dependent and load-dependent effects, a comprehensive dynamic model is developed which includes two components: the first component is used to describe the rate-independent hysteresis nonlinearity with un-parallel Prandtl-Ishlinskii operators, and the cascaded second component is applied to represent the load-dependent dynamic behavior of the PAM using a nonlinear autoregressive moving average with exogenous input model implemented by recurrent fuzzy neural networks. To validate the proposed model, experiments are conducted with different input frequencies and mechanical loads. The experimental results demonstrate that the dynamic model shows a good agreement with the dynamic behaviors of the PAM under input conditions with different mechanical loads and input frequencies. In addition, the inverse model is designed to predict the mechanical load exerted to the PAM, and shows good prediction ability.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.107133</doi><orcidid>https://orcid.org/0000-0001-8791-2253</orcidid><orcidid>https://orcid.org/0000-0002-7560-9764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2021-02, Vol.148, p.107133, Article 107133
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2454516940
source Elsevier ScienceDirect Journals Complete
subjects Artificial muscles
Artificial neural networks
Asymmetric hysteresis
Autoregressive moving average
Autoregressive moving-average models
Dynamic model
Dynamic models
Fuzzy logic
Hysteresis
Load
Load dependency
Loads (forces)
Neural networks
Nonlinearity
Pneumatic artificial muscles
Rate dependency
title A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20dynamic%20model%20for%20pneumatic%20artificial%20muscles%20considering%20different%20input%20frequencies%20and%20mechanical%20loads&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Zhang,%20Ying&rft.date=2021-02-01&rft.volume=148&rft.spage=107133&rft.pages=107133-&rft.artnum=107133&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.107133&rft_dat=%3Cproquest_cross%3E2454516940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454516940&rft_id=info:pmid/&rft_els_id=S0888327020305197&rfr_iscdi=true