A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices

We report the development of an efficient imprinting process for the formation of metal (Au) nanodot arrays using a square-patterned medium substrate. Solid-state dewetting is induced by differences in the surface energy of the metal film and the interface energy between the substrate and the metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-10, Vol.117 (17)
Hauptverfasser: Cho, Jae Sang, Jang, Woongsik, Park, Keum Hwan, Wang, Dong Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Applied physics letters
container_volume 117
creator Cho, Jae Sang
Jang, Woongsik
Park, Keum Hwan
Wang, Dong Hwan
description We report the development of an efficient imprinting process for the formation of metal (Au) nanodot arrays using a square-patterned medium substrate. Solid-state dewetting is induced by differences in the surface energy of the metal film and the interface energy between the substrate and the metal film. Thus, uniform metal nanodot arrays were transferred to the desired substrate by controlling the interfacial surface free energy between the metal film and the substrate. Optical extinction measurements showed an intense extinction peak at 550 nm, corresponding to the simulated result. Imprinting of the Au-nanodot arrays on the substrate enhanced the light trapping function and supported the electrical properties of a polymer electrode. In addition, the combination of a transparent conducting oxide-free device with the Au-nanodot arrays and a polymer electrode resulted in enhanced performance. This can be attributed to the fact that the Au-nanodot arrays allowed higher charge extraction, as confirmed by electrical analyses. Finally, a next-generation approach of imprinting metal nanodot arrays was introduced through the controlled solid-state dewetting mechanism in a specific area, which can be applicable not only in the development of optoelectronic devices but also in semiconductor processes requiring metal nanostructures.
doi_str_mv 10.1063/5.0020575
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2454493635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454493635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-64261d12fe6f26061aaccf34846e713e7d25909afdf2877f2d6adf3bb94f59fb3</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIuFIYzWWSdJaleIOCG12HTC41ZZrUJK327Y224N7V4cDHufwAXGJ0ixGnd-wWIYKYYEdghJEQDcV4cgxGCCHa8I7hU3CW87K2jFA6AmUKF3EwMKgQTSxQpaR20K_WyYfiwwKuU9Q2Z9irbA2MAeY4eNPkooqFxn7a8stcTNA657W3ocD45Y1tXLIWrt9jids4FOV19Vtfp52DE6eGbC8OdQzeHu5fZ0_N_OXxeTadN5oSURreEo4NJs5yRzjiWCmtHW0nLbcCUysMYR3qlDOOTIRwxHBlHO37rnWscz0dg6v93PrEx8bmIpdxk0JdKUnL2rajnLKqrvdKp5hzsk7W51cq7SRG8idUyeQh1Gpv9jZrXxPwMfwPb2P6g3Jdr_4GQTqHRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454493635</pqid></control><display><type>article</type><title>A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cho, Jae Sang ; Jang, Woongsik ; Park, Keum Hwan ; Wang, Dong Hwan</creator><creatorcontrib>Cho, Jae Sang ; Jang, Woongsik ; Park, Keum Hwan ; Wang, Dong Hwan</creatorcontrib><description>We report the development of an efficient imprinting process for the formation of metal (Au) nanodot arrays using a square-patterned medium substrate. Solid-state dewetting is induced by differences in the surface energy of the metal film and the interface energy between the substrate and the metal film. Thus, uniform metal nanodot arrays were transferred to the desired substrate by controlling the interfacial surface free energy between the metal film and the substrate. Optical extinction measurements showed an intense extinction peak at 550 nm, corresponding to the simulated result. Imprinting of the Au-nanodot arrays on the substrate enhanced the light trapping function and supported the electrical properties of a polymer electrode. In addition, the combination of a transparent conducting oxide-free device with the Au-nanodot arrays and a polymer electrode resulted in enhanced performance. This can be attributed to the fact that the Au-nanodot arrays allowed higher charge extraction, as confirmed by electrical analyses. Finally, a next-generation approach of imprinting metal nanodot arrays was introduced through the controlled solid-state dewetting mechanism in a specific area, which can be applicable not only in the development of optoelectronic devices but also in semiconductor processes requiring metal nanostructures.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0020575</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Addition polymerization ; Applied physics ; Arrays ; Drying ; Electrical properties ; Electrodes ; Extinction ; Free energy ; Gold ; Optoelectronic devices ; Photovoltaic cells ; Polymers ; Solid state ; Substrates ; Surface energy</subject><ispartof>Applied physics letters, 2020-10, Vol.117 (17)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-64261d12fe6f26061aaccf34846e713e7d25909afdf2877f2d6adf3bb94f59fb3</citedby><cites>FETCH-LOGICAL-c327t-64261d12fe6f26061aaccf34846e713e7d25909afdf2877f2d6adf3bb94f59fb3</cites><orcidid>0000-0003-3736-3721 ; 0000-0001-7122-1685 ; 0000-0003-3155-9678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0020575$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Cho, Jae Sang</creatorcontrib><creatorcontrib>Jang, Woongsik</creatorcontrib><creatorcontrib>Park, Keum Hwan</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><title>A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices</title><title>Applied physics letters</title><description>We report the development of an efficient imprinting process for the formation of metal (Au) nanodot arrays using a square-patterned medium substrate. Solid-state dewetting is induced by differences in the surface energy of the metal film and the interface energy between the substrate and the metal film. Thus, uniform metal nanodot arrays were transferred to the desired substrate by controlling the interfacial surface free energy between the metal film and the substrate. Optical extinction measurements showed an intense extinction peak at 550 nm, corresponding to the simulated result. Imprinting of the Au-nanodot arrays on the substrate enhanced the light trapping function and supported the electrical properties of a polymer electrode. In addition, the combination of a transparent conducting oxide-free device with the Au-nanodot arrays and a polymer electrode resulted in enhanced performance. This can be attributed to the fact that the Au-nanodot arrays allowed higher charge extraction, as confirmed by electrical analyses. Finally, a next-generation approach of imprinting metal nanodot arrays was introduced through the controlled solid-state dewetting mechanism in a specific area, which can be applicable not only in the development of optoelectronic devices but also in semiconductor processes requiring metal nanostructures.</description><subject>Addition polymerization</subject><subject>Applied physics</subject><subject>Arrays</subject><subject>Drying</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Extinction</subject><subject>Free energy</subject><subject>Gold</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solid state</subject><subject>Substrates</subject><subject>Surface energy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIuFIYzWWSdJaleIOCG12HTC41ZZrUJK327Y224N7V4cDHufwAXGJ0ixGnd-wWIYKYYEdghJEQDcV4cgxGCCHa8I7hU3CW87K2jFA6AmUKF3EwMKgQTSxQpaR20K_WyYfiwwKuU9Q2Z9irbA2MAeY4eNPkooqFxn7a8stcTNA657W3ocD45Y1tXLIWrt9jids4FOV19Vtfp52DE6eGbC8OdQzeHu5fZ0_N_OXxeTadN5oSURreEo4NJs5yRzjiWCmtHW0nLbcCUysMYR3qlDOOTIRwxHBlHO37rnWscz0dg6v93PrEx8bmIpdxk0JdKUnL2rajnLKqrvdKp5hzsk7W51cq7SRG8idUyeQh1Gpv9jZrXxPwMfwPb2P6g3Jdr_4GQTqHRg</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Cho, Jae Sang</creator><creator>Jang, Woongsik</creator><creator>Park, Keum Hwan</creator><creator>Wang, Dong Hwan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3736-3721</orcidid><orcidid>https://orcid.org/0000-0001-7122-1685</orcidid><orcidid>https://orcid.org/0000-0003-3155-9678</orcidid></search><sort><creationdate>20201026</creationdate><title>A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices</title><author>Cho, Jae Sang ; Jang, Woongsik ; Park, Keum Hwan ; Wang, Dong Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-64261d12fe6f26061aaccf34846e713e7d25909afdf2877f2d6adf3bb94f59fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Applied physics</topic><topic>Arrays</topic><topic>Drying</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Extinction</topic><topic>Free energy</topic><topic>Gold</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solid state</topic><topic>Substrates</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Jae Sang</creatorcontrib><creatorcontrib>Jang, Woongsik</creatorcontrib><creatorcontrib>Park, Keum Hwan</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Jae Sang</au><au>Jang, Woongsik</au><au>Park, Keum Hwan</au><au>Wang, Dong Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices</atitle><jtitle>Applied physics letters</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>117</volume><issue>17</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report the development of an efficient imprinting process for the formation of metal (Au) nanodot arrays using a square-patterned medium substrate. Solid-state dewetting is induced by differences in the surface energy of the metal film and the interface energy between the substrate and the metal film. Thus, uniform metal nanodot arrays were transferred to the desired substrate by controlling the interfacial surface free energy between the metal film and the substrate. Optical extinction measurements showed an intense extinction peak at 550 nm, corresponding to the simulated result. Imprinting of the Au-nanodot arrays on the substrate enhanced the light trapping function and supported the electrical properties of a polymer electrode. In addition, the combination of a transparent conducting oxide-free device with the Au-nanodot arrays and a polymer electrode resulted in enhanced performance. This can be attributed to the fact that the Au-nanodot arrays allowed higher charge extraction, as confirmed by electrical analyses. Finally, a next-generation approach of imprinting metal nanodot arrays was introduced through the controlled solid-state dewetting mechanism in a specific area, which can be applicable not only in the development of optoelectronic devices but also in semiconductor processes requiring metal nanostructures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020575</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3736-3721</orcidid><orcidid>https://orcid.org/0000-0001-7122-1685</orcidid><orcidid>https://orcid.org/0000-0003-3155-9678</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-10, Vol.117 (17)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2454493635
source AIP Journals Complete; Alma/SFX Local Collection
subjects Addition polymerization
Applied physics
Arrays
Drying
Electrical properties
Electrodes
Extinction
Free energy
Gold
Optoelectronic devices
Photovoltaic cells
Polymers
Solid state
Substrates
Surface energy
title A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gold%20nanodot%20array%20imprinting%20process%20based%20on%20solid-state%20dewetting%20for%20efficient%20oxide-free%20photovoltaic%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Cho,%20Jae%20Sang&rft.date=2020-10-26&rft.volume=117&rft.issue=17&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0020575&rft_dat=%3Cproquest_scita%3E2454493635%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454493635&rft_id=info:pmid/&rfr_iscdi=true