A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation

A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.183557-183570
Hauptverfasser: De Almeida, Fabricio Alves, Streitenberger, Simone Carneiro, Torres, Alexandre Fonseca, De Paiva, Anderson Paulo, Gomes, Jose Henrique De Freitas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183570
container_issue
container_start_page 183557
container_title IEEE access
container_volume 8
creator De Almeida, Fabricio Alves
Streitenberger, Simone Carneiro
Torres, Alexandre Fonseca
De Paiva, Anderson Paulo
Gomes, Jose Henrique De Freitas
description A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.
doi_str_mv 10.1109/ACCESS.2020.3019031
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454471999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9174975</ieee_id><doaj_id>oai_doaj_org_article_a1bc402135a9407fbb06443093b8732a</doaj_id><sourcerecordid>2454471999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</originalsourceid><addsrcrecordid>eNpNUctKA0EQXETBoH5BLgOeE-e5s3MMwRcEFGP0OPTs9D5C3NHZycG_d-MGsS_dFF1V3VSWTRmdM0bNzWK5vF2v55xyOheUGSrYSTbhLDczoUR--m8-z676fkuHKgZI6Un2vCD3UCNZp73_Jq9NDPu6IalB8o5t3aS2q0moyAoSdom8QWzB7bAnm85jJE8xNaEOHezIS0iQ2tBdZmcV7Hq8OvaLbHN3-7p8mK2e7h-Xi9WslLRIs8obXirgDhAFUznPuWYGSy2c9rlTXApfMlYYwX3hjPelUqrEQmhAJqgRF9njqOsDbO1nbD8gftsArf0FQqwtxNSWO7TA3GDKmVBgJNWVczSX8iDiCi04DFrXo9ZnDF977JPdhn0cvuotl0rK4TJzcBTjVhlD30es_lwZtYck7JiEPSRhj0kMrOnIahHxj2GYlkYr8QP9p4KE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454471999</pqid></control><display><type>article</type><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</creator><creatorcontrib>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</creatorcontrib><description>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&amp;R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3019031</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis of variance ; Correlation analysis ; Covariance ; Data analysis ; Datasets ; Eigenvalues ; Eigenvalues and eigenfunctions ; Factor analysis ; Multivariate analysis ; Multivariate measurement system ; orthogonal rotation ; Pollution measurement ; Principal component analysis ; Proposals ; repeatability and reproducibility ; Reproducibility ; Resistance ; Resistance spot welding ; Rotation ; Spot welding ; Variance analysis ; weighted factor analysis ; Weighting</subject><ispartof>IEEE access, 2020, Vol.8, p.183557-183570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</citedby><cites>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</cites><orcidid>0000-0002-7341-6387 ; 0000-0002-8199-411X ; 0000-0002-7676-554X ; 0000-0001-6393-0078 ; 0000-0002-6460-1580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9174975$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>De Almeida, Fabricio Alves</creatorcontrib><creatorcontrib>Streitenberger, Simone Carneiro</creatorcontrib><creatorcontrib>Torres, Alexandre Fonseca</creatorcontrib><creatorcontrib>De Paiva, Anderson Paulo</creatorcontrib><creatorcontrib>Gomes, Jose Henrique De Freitas</creatorcontrib><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&amp;R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</description><subject>Analysis of variance</subject><subject>Correlation analysis</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Factor analysis</subject><subject>Multivariate analysis</subject><subject>Multivariate measurement system</subject><subject>orthogonal rotation</subject><subject>Pollution measurement</subject><subject>Principal component analysis</subject><subject>Proposals</subject><subject>repeatability and reproducibility</subject><subject>Reproducibility</subject><subject>Resistance</subject><subject>Resistance spot welding</subject><subject>Rotation</subject><subject>Spot welding</subject><subject>Variance analysis</subject><subject>weighted factor analysis</subject><subject>Weighting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXETBoH5BLgOeE-e5s3MMwRcEFGP0OPTs9D5C3NHZycG_d-MGsS_dFF1V3VSWTRmdM0bNzWK5vF2v55xyOheUGSrYSTbhLDczoUR--m8-z676fkuHKgZI6Un2vCD3UCNZp73_Jq9NDPu6IalB8o5t3aS2q0moyAoSdom8QWzB7bAnm85jJE8xNaEOHezIS0iQ2tBdZmcV7Hq8OvaLbHN3-7p8mK2e7h-Xi9WslLRIs8obXirgDhAFUznPuWYGSy2c9rlTXApfMlYYwX3hjPelUqrEQmhAJqgRF9njqOsDbO1nbD8gftsArf0FQqwtxNSWO7TA3GDKmVBgJNWVczSX8iDiCi04DFrXo9ZnDF977JPdhn0cvuotl0rK4TJzcBTjVhlD30es_lwZtYck7JiEPSRhj0kMrOnIahHxj2GYlkYr8QP9p4KE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>De Almeida, Fabricio Alves</creator><creator>Streitenberger, Simone Carneiro</creator><creator>Torres, Alexandre Fonseca</creator><creator>De Paiva, Anderson Paulo</creator><creator>Gomes, Jose Henrique De Freitas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7341-6387</orcidid><orcidid>https://orcid.org/0000-0002-8199-411X</orcidid><orcidid>https://orcid.org/0000-0002-7676-554X</orcidid><orcidid>https://orcid.org/0000-0001-6393-0078</orcidid><orcidid>https://orcid.org/0000-0002-6460-1580</orcidid></search><sort><creationdate>2020</creationdate><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><author>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis of variance</topic><topic>Correlation analysis</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Factor analysis</topic><topic>Multivariate analysis</topic><topic>Multivariate measurement system</topic><topic>orthogonal rotation</topic><topic>Pollution measurement</topic><topic>Principal component analysis</topic><topic>Proposals</topic><topic>repeatability and reproducibility</topic><topic>Reproducibility</topic><topic>Resistance</topic><topic>Resistance spot welding</topic><topic>Rotation</topic><topic>Spot welding</topic><topic>Variance analysis</topic><topic>weighted factor analysis</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Almeida, Fabricio Alves</creatorcontrib><creatorcontrib>Streitenberger, Simone Carneiro</creatorcontrib><creatorcontrib>Torres, Alexandre Fonseca</creatorcontrib><creatorcontrib>De Paiva, Anderson Paulo</creatorcontrib><creatorcontrib>Gomes, Jose Henrique De Freitas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Almeida, Fabricio Alves</au><au>Streitenberger, Simone Carneiro</au><au>Torres, Alexandre Fonseca</au><au>De Paiva, Anderson Paulo</au><au>Gomes, Jose Henrique De Freitas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>183557</spage><epage>183570</epage><pages>183557-183570</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&amp;R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3019031</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7341-6387</orcidid><orcidid>https://orcid.org/0000-0002-8199-411X</orcidid><orcidid>https://orcid.org/0000-0002-7676-554X</orcidid><orcidid>https://orcid.org/0000-0001-6393-0078</orcidid><orcidid>https://orcid.org/0000-0002-6460-1580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.183557-183570
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454471999
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of variance
Correlation analysis
Covariance
Data analysis
Datasets
Eigenvalues
Eigenvalues and eigenfunctions
Factor analysis
Multivariate analysis
Multivariate measurement system
orthogonal rotation
Pollution measurement
Principal component analysis
Proposals
repeatability and reproducibility
Reproducibility
Resistance
Resistance spot welding
Rotation
Spot welding
Variance analysis
weighted factor analysis
Weighting
title A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gage%20Study%20Through%20the%20Weighting%20of%20Latent%20Variables%20Under%20Orthogonal%20Rotation&rft.jtitle=IEEE%20access&rft.au=De%20Almeida,%20Fabricio%20Alves&rft.date=2020&rft.volume=8&rft.spage=183557&rft.epage=183570&rft.pages=183557-183570&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3019031&rft_dat=%3Cproquest_doaj_%3E2454471999%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454471999&rft_id=info:pmid/&rft_ieee_id=9174975&rft_doaj_id=oai_doaj_org_article_a1bc402135a9407fbb06443093b8732a&rfr_iscdi=true