A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation
A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of lat...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.183557-183570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183570 |
---|---|
container_issue | |
container_start_page | 183557 |
container_title | IEEE access |
container_volume | 8 |
creator | De Almeida, Fabricio Alves Streitenberger, Simone Carneiro Torres, Alexandre Fonseca De Paiva, Anderson Paulo Gomes, Jose Henrique De Freitas |
description | A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort. |
doi_str_mv | 10.1109/ACCESS.2020.3019031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454471999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9174975</ieee_id><doaj_id>oai_doaj_org_article_a1bc402135a9407fbb06443093b8732a</doaj_id><sourcerecordid>2454471999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</originalsourceid><addsrcrecordid>eNpNUctKA0EQXETBoH5BLgOeE-e5s3MMwRcEFGP0OPTs9D5C3NHZycG_d-MGsS_dFF1V3VSWTRmdM0bNzWK5vF2v55xyOheUGSrYSTbhLDczoUR--m8-z676fkuHKgZI6Un2vCD3UCNZp73_Jq9NDPu6IalB8o5t3aS2q0moyAoSdom8QWzB7bAnm85jJE8xNaEOHezIS0iQ2tBdZmcV7Hq8OvaLbHN3-7p8mK2e7h-Xi9WslLRIs8obXirgDhAFUznPuWYGSy2c9rlTXApfMlYYwX3hjPelUqrEQmhAJqgRF9njqOsDbO1nbD8gftsArf0FQqwtxNSWO7TA3GDKmVBgJNWVczSX8iDiCi04DFrXo9ZnDF977JPdhn0cvuotl0rK4TJzcBTjVhlD30es_lwZtYck7JiEPSRhj0kMrOnIahHxj2GYlkYr8QP9p4KE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454471999</pqid></control><display><type>article</type><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</creator><creatorcontrib>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</creatorcontrib><description>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3019031</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis of variance ; Correlation analysis ; Covariance ; Data analysis ; Datasets ; Eigenvalues ; Eigenvalues and eigenfunctions ; Factor analysis ; Multivariate analysis ; Multivariate measurement system ; orthogonal rotation ; Pollution measurement ; Principal component analysis ; Proposals ; repeatability and reproducibility ; Reproducibility ; Resistance ; Resistance spot welding ; Rotation ; Spot welding ; Variance analysis ; weighted factor analysis ; Weighting</subject><ispartof>IEEE access, 2020, Vol.8, p.183557-183570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</citedby><cites>FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</cites><orcidid>0000-0002-7341-6387 ; 0000-0002-8199-411X ; 0000-0002-7676-554X ; 0000-0001-6393-0078 ; 0000-0002-6460-1580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9174975$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>De Almeida, Fabricio Alves</creatorcontrib><creatorcontrib>Streitenberger, Simone Carneiro</creatorcontrib><creatorcontrib>Torres, Alexandre Fonseca</creatorcontrib><creatorcontrib>De Paiva, Anderson Paulo</creatorcontrib><creatorcontrib>Gomes, Jose Henrique De Freitas</creatorcontrib><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</description><subject>Analysis of variance</subject><subject>Correlation analysis</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Factor analysis</subject><subject>Multivariate analysis</subject><subject>Multivariate measurement system</subject><subject>orthogonal rotation</subject><subject>Pollution measurement</subject><subject>Principal component analysis</subject><subject>Proposals</subject><subject>repeatability and reproducibility</subject><subject>Reproducibility</subject><subject>Resistance</subject><subject>Resistance spot welding</subject><subject>Rotation</subject><subject>Spot welding</subject><subject>Variance analysis</subject><subject>weighted factor analysis</subject><subject>Weighting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXETBoH5BLgOeE-e5s3MMwRcEFGP0OPTs9D5C3NHZycG_d-MGsS_dFF1V3VSWTRmdM0bNzWK5vF2v55xyOheUGSrYSTbhLDczoUR--m8-z676fkuHKgZI6Un2vCD3UCNZp73_Jq9NDPu6IalB8o5t3aS2q0moyAoSdom8QWzB7bAnm85jJE8xNaEOHezIS0iQ2tBdZmcV7Hq8OvaLbHN3-7p8mK2e7h-Xi9WslLRIs8obXirgDhAFUznPuWYGSy2c9rlTXApfMlYYwX3hjPelUqrEQmhAJqgRF9njqOsDbO1nbD8gftsArf0FQqwtxNSWO7TA3GDKmVBgJNWVczSX8iDiCi04DFrXo9ZnDF977JPdhn0cvuotl0rK4TJzcBTjVhlD30es_lwZtYck7JiEPSRhj0kMrOnIahHxj2GYlkYr8QP9p4KE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>De Almeida, Fabricio Alves</creator><creator>Streitenberger, Simone Carneiro</creator><creator>Torres, Alexandre Fonseca</creator><creator>De Paiva, Anderson Paulo</creator><creator>Gomes, Jose Henrique De Freitas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7341-6387</orcidid><orcidid>https://orcid.org/0000-0002-8199-411X</orcidid><orcidid>https://orcid.org/0000-0002-7676-554X</orcidid><orcidid>https://orcid.org/0000-0001-6393-0078</orcidid><orcidid>https://orcid.org/0000-0002-6460-1580</orcidid></search><sort><creationdate>2020</creationdate><title>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</title><author>De Almeida, Fabricio Alves ; Streitenberger, Simone Carneiro ; Torres, Alexandre Fonseca ; De Paiva, Anderson Paulo ; Gomes, Jose Henrique De Freitas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fd92c5a2baee3156262719ec73b7d6b5243dc118932d8b9ddc555ce837ae13093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis of variance</topic><topic>Correlation analysis</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Factor analysis</topic><topic>Multivariate analysis</topic><topic>Multivariate measurement system</topic><topic>orthogonal rotation</topic><topic>Pollution measurement</topic><topic>Principal component analysis</topic><topic>Proposals</topic><topic>repeatability and reproducibility</topic><topic>Reproducibility</topic><topic>Resistance</topic><topic>Resistance spot welding</topic><topic>Rotation</topic><topic>Spot welding</topic><topic>Variance analysis</topic><topic>weighted factor analysis</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Almeida, Fabricio Alves</creatorcontrib><creatorcontrib>Streitenberger, Simone Carneiro</creatorcontrib><creatorcontrib>Torres, Alexandre Fonseca</creatorcontrib><creatorcontrib>De Paiva, Anderson Paulo</creatorcontrib><creatorcontrib>Gomes, Jose Henrique De Freitas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Almeida, Fabricio Alves</au><au>Streitenberger, Simone Carneiro</au><au>Torres, Alexandre Fonseca</au><au>De Paiva, Anderson Paulo</au><au>Gomes, Jose Henrique De Freitas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>183557</spage><epage>183570</epage><pages>183557-183570</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new approach to identify and diagnose the quality of extensive and multivariate data is presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent information, providing a statistically appropriate alternative when dealing with two or more correlated data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted with their respective eigenvalue for each factor. This procedure results in a single response vector, which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the method, a real data set from a resistance spot welding process is selected, and two different types of rotation are compared. The proposed method provided an output that contemplated all of the significant variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data dimensionality, thus minimizing the time for analysis and computational effort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3019031</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7341-6387</orcidid><orcidid>https://orcid.org/0000-0002-8199-411X</orcidid><orcidid>https://orcid.org/0000-0002-7676-554X</orcidid><orcidid>https://orcid.org/0000-0001-6393-0078</orcidid><orcidid>https://orcid.org/0000-0002-6460-1580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.183557-183570 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454471999 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis of variance Correlation analysis Covariance Data analysis Datasets Eigenvalues Eigenvalues and eigenfunctions Factor analysis Multivariate analysis Multivariate measurement system orthogonal rotation Pollution measurement Principal component analysis Proposals repeatability and reproducibility Reproducibility Resistance Resistance spot welding Rotation Spot welding Variance analysis weighted factor analysis Weighting |
title | A Gage Study Through the Weighting of Latent Variables Under Orthogonal Rotation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gage%20Study%20Through%20the%20Weighting%20of%20Latent%20Variables%20Under%20Orthogonal%20Rotation&rft.jtitle=IEEE%20access&rft.au=De%20Almeida,%20Fabricio%20Alves&rft.date=2020&rft.volume=8&rft.spage=183557&rft.epage=183570&rft.pages=183557-183570&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3019031&rft_dat=%3Cproquest_doaj_%3E2454471999%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454471999&rft_id=info:pmid/&rft_ieee_id=9174975&rft_doaj_id=oai_doaj_org_article_a1bc402135a9407fbb06443093b8732a&rfr_iscdi=true |