Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines

Interturn short-circuit fault, also known as turn fault, is a common fault in electric machines, which can cause severe damages if no prompt detection and mitigation are conducted. This article proposes a turn fault detection method for permanent magnet machines based on current residual. After the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-01, Vol.68 (1), p.59-69
Hauptverfasser: Hu, Rongguang, Wang, Jiabin, Mills, Andrew R., Chong, Ellis, Sun, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 59
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Hu, Rongguang
Wang, Jiabin
Mills, Andrew R.
Chong, Ellis
Sun, Zhigang
description Interturn short-circuit fault, also known as turn fault, is a common fault in electric machines, which can cause severe damages if no prompt detection and mitigation are conducted. This article proposes a turn fault detection method for permanent magnet machines based on current residual. After the impact of the turn fault is first analyzed on a simplified mathematical machine model to assess the fault signature, a finite-element model is developed to obtain healthy machine behavior. The residual between the measured and estimated currents by the model with the same applied voltages contains mainly the fault features. The quality of the fault detection can be improved because the fault signatures are enhanced, and the impact of the current controller bandwidth on fault signature is minimized. The dc components in the negative-sequence current residuals are extracted through angular integration, and their magnitude is defined as the fault indicator. The robustness of the fault detection against transient states is achieved. The effectiveness of the proposed method is validated on a triple redundant fault-tolerant permanent-magnet-assisted synchronous reluctance machine.
doi_str_mv 10.1109/TIE.2020.2965500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2454470384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8960656</ieee_id><sourcerecordid>2454470384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1a6797edf84009c0c4ec8e436a67b5ffa11a52bd20fda27c33db1833b53b50343</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZzyRHra0GKorW87JJJprSburu5uC_d0OLMDAwvM_M8BByTWFGKRR363IxY8BgxgolJcAJmVAps7QoRH5KJsCyPAUQ6pxceL8BoEJSOSHr-eAc2pC-o--awWzTB-OxST6CCb1LShvQhcHZZGmGbUgeMWAdut4mnU3e0O2MjXDyYr4sjq3-7iz6S3LWmq3Hq2Ofks_lYj1_TlevT-X8fpXWnPOQUqOyIsOmzQVAUUMtsM5RcBXnlWxbQ6mRrGoYtI1hWYSaiuacVzIWcMGn5Pawd-_6nwF90Js-_hpPaiakEBnwfEzBIVW73nuHrd67bmfcr6agR3c6utOjO310F5GbA9Ih4n88LxQoqfgfO3FqRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470384</pqid></control><display><type>article</type><title>Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Rongguang ; Wang, Jiabin ; Mills, Andrew R. ; Chong, Ellis ; Sun, Zhigang</creator><creatorcontrib>Hu, Rongguang ; Wang, Jiabin ; Mills, Andrew R. ; Chong, Ellis ; Sun, Zhigang</creatorcontrib><description>Interturn short-circuit fault, also known as turn fault, is a common fault in electric machines, which can cause severe damages if no prompt detection and mitigation are conducted. This article proposes a turn fault detection method for permanent magnet machines based on current residual. After the impact of the turn fault is first analyzed on a simplified mathematical machine model to assess the fault signature, a finite-element model is developed to obtain healthy machine behavior. The residual between the measured and estimated currents by the model with the same applied voltages contains mainly the fault features. The quality of the fault detection can be improved because the fault signatures are enhanced, and the impact of the current controller bandwidth on fault signature is minimized. The dc components in the negative-sequence current residuals are extracted through angular integration, and their magnitude is defined as the fault indicator. The robustness of the fault detection against transient states is achieved. The effectiveness of the proposed method is validated on a triple redundant fault-tolerant permanent-magnet-assisted synchronous reluctance machine.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2965500</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Circuit faults ; Current residual ; Damage detection ; dc component extraction ; Fault detection ; Fault tolerance ; Finite element method ; Harmonic analysis ; Insulation ; Mathematical model ; Mathematical models ; negative sequence ; permanent magnet machine ; Permanent magnets ; Reluctance machinery ; Robustness (mathematics) ; Short circuits ; Transient analysis ; turn fault detection</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-01, Vol.68 (1), p.59-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1a6797edf84009c0c4ec8e436a67b5ffa11a52bd20fda27c33db1833b53b50343</citedby><cites>FETCH-LOGICAL-c333t-1a6797edf84009c0c4ec8e436a67b5ffa11a52bd20fda27c33db1833b53b50343</cites><orcidid>0000-0003-0057-0743 ; 0000-0002-6798-5284 ; 0000-0003-4870-3744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8960656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8960656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Rongguang</creatorcontrib><creatorcontrib>Wang, Jiabin</creatorcontrib><creatorcontrib>Mills, Andrew R.</creatorcontrib><creatorcontrib>Chong, Ellis</creatorcontrib><creatorcontrib>Sun, Zhigang</creatorcontrib><title>Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Interturn short-circuit fault, also known as turn fault, is a common fault in electric machines, which can cause severe damages if no prompt detection and mitigation are conducted. This article proposes a turn fault detection method for permanent magnet machines based on current residual. After the impact of the turn fault is first analyzed on a simplified mathematical machine model to assess the fault signature, a finite-element model is developed to obtain healthy machine behavior. The residual between the measured and estimated currents by the model with the same applied voltages contains mainly the fault features. The quality of the fault detection can be improved because the fault signatures are enhanced, and the impact of the current controller bandwidth on fault signature is minimized. The dc components in the negative-sequence current residuals are extracted through angular integration, and their magnitude is defined as the fault indicator. The robustness of the fault detection against transient states is achieved. The effectiveness of the proposed method is validated on a triple redundant fault-tolerant permanent-magnet-assisted synchronous reluctance machine.</description><subject>Analytical models</subject><subject>Circuit faults</subject><subject>Current residual</subject><subject>Damage detection</subject><subject>dc component extraction</subject><subject>Fault detection</subject><subject>Fault tolerance</subject><subject>Finite element method</subject><subject>Harmonic analysis</subject><subject>Insulation</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>negative sequence</subject><subject>permanent magnet machine</subject><subject>Permanent magnets</subject><subject>Reluctance machinery</subject><subject>Robustness (mathematics)</subject><subject>Short circuits</subject><subject>Transient analysis</subject><subject>turn fault detection</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZzyRHra0GKorW87JJJprSburu5uC_d0OLMDAwvM_M8BByTWFGKRR363IxY8BgxgolJcAJmVAps7QoRH5KJsCyPAUQ6pxceL8BoEJSOSHr-eAc2pC-o--awWzTB-OxST6CCb1LShvQhcHZZGmGbUgeMWAdut4mnU3e0O2MjXDyYr4sjq3-7iz6S3LWmq3Hq2Ofks_lYj1_TlevT-X8fpXWnPOQUqOyIsOmzQVAUUMtsM5RcBXnlWxbQ6mRrGoYtI1hWYSaiuacVzIWcMGn5Pawd-_6nwF90Js-_hpPaiakEBnwfEzBIVW73nuHrd67bmfcr6agR3c6utOjO310F5GbA9Ih4n88LxQoqfgfO3FqRg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Hu, Rongguang</creator><creator>Wang, Jiabin</creator><creator>Mills, Andrew R.</creator><creator>Chong, Ellis</creator><creator>Sun, Zhigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0057-0743</orcidid><orcidid>https://orcid.org/0000-0002-6798-5284</orcidid><orcidid>https://orcid.org/0000-0003-4870-3744</orcidid></search><sort><creationdate>202101</creationdate><title>Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines</title><author>Hu, Rongguang ; Wang, Jiabin ; Mills, Andrew R. ; Chong, Ellis ; Sun, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1a6797edf84009c0c4ec8e436a67b5ffa11a52bd20fda27c33db1833b53b50343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Circuit faults</topic><topic>Current residual</topic><topic>Damage detection</topic><topic>dc component extraction</topic><topic>Fault detection</topic><topic>Fault tolerance</topic><topic>Finite element method</topic><topic>Harmonic analysis</topic><topic>Insulation</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>negative sequence</topic><topic>permanent magnet machine</topic><topic>Permanent magnets</topic><topic>Reluctance machinery</topic><topic>Robustness (mathematics)</topic><topic>Short circuits</topic><topic>Transient analysis</topic><topic>turn fault detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Rongguang</creatorcontrib><creatorcontrib>Wang, Jiabin</creatorcontrib><creatorcontrib>Mills, Andrew R.</creatorcontrib><creatorcontrib>Chong, Ellis</creatorcontrib><creatorcontrib>Sun, Zhigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Rongguang</au><au>Wang, Jiabin</au><au>Mills, Andrew R.</au><au>Chong, Ellis</au><au>Sun, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>59</spage><epage>69</epage><pages>59-69</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Interturn short-circuit fault, also known as turn fault, is a common fault in electric machines, which can cause severe damages if no prompt detection and mitigation are conducted. This article proposes a turn fault detection method for permanent magnet machines based on current residual. After the impact of the turn fault is first analyzed on a simplified mathematical machine model to assess the fault signature, a finite-element model is developed to obtain healthy machine behavior. The residual between the measured and estimated currents by the model with the same applied voltages contains mainly the fault features. The quality of the fault detection can be improved because the fault signatures are enhanced, and the impact of the current controller bandwidth on fault signature is minimized. The dc components in the negative-sequence current residuals are extracted through angular integration, and their magnitude is defined as the fault indicator. The robustness of the fault detection against transient states is achieved. The effectiveness of the proposed method is validated on a triple redundant fault-tolerant permanent-magnet-assisted synchronous reluctance machine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2965500</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0057-0743</orcidid><orcidid>https://orcid.org/0000-0002-6798-5284</orcidid><orcidid>https://orcid.org/0000-0003-4870-3744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-01, Vol.68 (1), p.59-69
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2454470384
source IEEE Electronic Library (IEL)
subjects Analytical models
Circuit faults
Current residual
Damage detection
dc component extraction
Fault detection
Fault tolerance
Finite element method
Harmonic analysis
Insulation
Mathematical model
Mathematical models
negative sequence
permanent magnet machine
Permanent magnets
Reluctance machinery
Robustness (mathematics)
Short circuits
Transient analysis
turn fault detection
title Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current-Residual-Based%20Stator%20Interturn%20Fault%20Detection%20in%20Permanent%20Magnet%20Machines&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Hu,%20Rongguang&rft.date=2021-01&rft.volume=68&rft.issue=1&rft.spage=59&rft.epage=69&rft.pages=59-69&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2965500&rft_dat=%3Cproquest_RIE%3E2454470384%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454470384&rft_id=info:pmid/&rft_ieee_id=8960656&rfr_iscdi=true