Efficient NewHope Cryptography Based Facial Security System on a GPU

With explosive era of machine learning development, human data, such as biometric images, videos, and particularly facial information, have become an essential training resource. The popularity of video surveillance systems and growing use of facial images have increased the risk of leaking personal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.108158-108168
Hauptverfasser: Duong-Ngoc, Phap, Tan, Tuy Nguyen, Lee, Hanho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108168
container_issue
container_start_page 108158
container_title IEEE access
container_volume 8
creator Duong-Ngoc, Phap
Tan, Tuy Nguyen
Lee, Hanho
description With explosive era of machine learning development, human data, such as biometric images, videos, and particularly facial information, have become an essential training resource. The popularity of video surveillance systems and growing use of facial images have increased the risk of leaking personal information. On the other hand, traditional cryptography systems are still expensive, time consuming, and low security, leading to be threatened by the foreseeable attacks of quantum computers. This paper proposes a novel approach to fully protect facial images extracted from videos based on a post-quantum cryptosystem named NewHope cryptography. Applying the proposed technique to arrange input data for encryption and decryption processes significantly reduces encryption and decryption times. The proposed facial security system was successfully accelerated using data-parallel computing model on the recently launched Nvidia GTX 2080Ti Graphics Processing Unit (GPU). Average face frame extracted from video ( 190\times 190 pixel) required only 2.2~ms and 2.7~ms total encryption and decryption times with security parameters n=1024 and n=2048 , respectively, which is approximately 9 times faster than previous approaches. Analysis results of security criteria proved that the proposed system offered comparable confidentiality to previous systems.
doi_str_mv 10.1109/ACCESS.2020.3000316
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454442204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109278</ieee_id><doaj_id>oai_doaj_org_article_f68c8e0225024e1abea3255e096b4335</doaj_id><sourcerecordid>2454442204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-aa061cb85c26f8a88c49e1e7ac211549e71bc678ade71edec3ffa10225990ebf3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRUGo_QS8Lnlv3X5LNUWOtQlEh9rxMNrOaUrtxkyL59m6NiKd5DO-9GX6EzDhbcM7y65uiWJblQjDBFpIxJnl6Qi4ET_O5TGR6-k-fk2nXbaOH6bhKsgtyt3SusQ3ue_qEXw--RVqEoe39W4D2faC30GFN78E2sKMl2kNo-oGWQ9fjB_V7CnT1srkkZw52HU5_54Rs7pevxcN8_bx6LG7Wc6uY7ucALOW20okVqdOgtVU5cszACs6TqDNe2TTTUEeFNVrpHHAmRJLnDCsnJ-Rx7K09bE0bmg8Ig_HQmJ-FD28GQt_YHRqXaqvxmGVCIYcKQYokQZanlZKRxYRcjV1t8J8H7Hqz9Yewj-8boRKllBBMRZccXTb4rgvo_q5yZo70zUjfHOmbX_oxNRtTDSL-JfJoF5mW32jvfqk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454442204</pqid></control><display><type>article</type><title>Efficient NewHope Cryptography Based Facial Security System on a GPU</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Duong-Ngoc, Phap ; Tan, Tuy Nguyen ; Lee, Hanho</creator><creatorcontrib>Duong-Ngoc, Phap ; Tan, Tuy Nguyen ; Lee, Hanho</creatorcontrib><description><![CDATA[With explosive era of machine learning development, human data, such as biometric images, videos, and particularly facial information, have become an essential training resource. The popularity of video surveillance systems and growing use of facial images have increased the risk of leaking personal information. On the other hand, traditional cryptography systems are still expensive, time consuming, and low security, leading to be threatened by the foreseeable attacks of quantum computers. This paper proposes a novel approach to fully protect facial images extracted from videos based on a post-quantum cryptosystem named NewHope cryptography. Applying the proposed technique to arrange input data for encryption and decryption processes significantly reduces encryption and decryption times. The proposed facial security system was successfully accelerated using data-parallel computing model on the recently launched Nvidia GTX 2080Ti Graphics Processing Unit (GPU). Average face frame extracted from video (<inline-formula> <tex-math notation="LaTeX">190\times 190 </tex-math></inline-formula> pixel) required only <inline-formula> <tex-math notation="LaTeX">2.2~ms </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.7~ms </tex-math></inline-formula> total encryption and decryption times with security parameters <inline-formula> <tex-math notation="LaTeX">n=1024 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n=2048 </tex-math></inline-formula>, respectively, which is approximately 9 times faster than previous approaches. Analysis results of security criteria proved that the proposed system offered comparable confidentiality to previous systems.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3000316</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computers ; Cryptography ; Cryptosystem ; Elliptic curve cryptography ; Encryption ; facial security system ; graphics processing unit ; Graphics processing units ; Machine learning ; NewHope ; public-key encryption ; Quantum computers ; Security systems ; Surveillance systems ; Video ; Videos</subject><ispartof>IEEE access, 2020, Vol.8, p.108158-108168</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-aa061cb85c26f8a88c49e1e7ac211549e71bc678ade71edec3ffa10225990ebf3</citedby><cites>FETCH-LOGICAL-c408t-aa061cb85c26f8a88c49e1e7ac211549e71bc678ade71edec3ffa10225990ebf3</cites><orcidid>0000-0002-9485-7720 ; 0000-0001-8815-1927 ; 0000-0002-0311-9387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109278$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Duong-Ngoc, Phap</creatorcontrib><creatorcontrib>Tan, Tuy Nguyen</creatorcontrib><creatorcontrib>Lee, Hanho</creatorcontrib><title>Efficient NewHope Cryptography Based Facial Security System on a GPU</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[With explosive era of machine learning development, human data, such as biometric images, videos, and particularly facial information, have become an essential training resource. The popularity of video surveillance systems and growing use of facial images have increased the risk of leaking personal information. On the other hand, traditional cryptography systems are still expensive, time consuming, and low security, leading to be threatened by the foreseeable attacks of quantum computers. This paper proposes a novel approach to fully protect facial images extracted from videos based on a post-quantum cryptosystem named NewHope cryptography. Applying the proposed technique to arrange input data for encryption and decryption processes significantly reduces encryption and decryption times. The proposed facial security system was successfully accelerated using data-parallel computing model on the recently launched Nvidia GTX 2080Ti Graphics Processing Unit (GPU). Average face frame extracted from video (<inline-formula> <tex-math notation="LaTeX">190\times 190 </tex-math></inline-formula> pixel) required only <inline-formula> <tex-math notation="LaTeX">2.2~ms </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.7~ms </tex-math></inline-formula> total encryption and decryption times with security parameters <inline-formula> <tex-math notation="LaTeX">n=1024 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n=2048 </tex-math></inline-formula>, respectively, which is approximately 9 times faster than previous approaches. Analysis results of security criteria proved that the proposed system offered comparable confidentiality to previous systems.]]></description><subject>Computers</subject><subject>Cryptography</subject><subject>Cryptosystem</subject><subject>Elliptic curve cryptography</subject><subject>Encryption</subject><subject>facial security system</subject><subject>graphics processing unit</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>NewHope</subject><subject>public-key encryption</subject><subject>Quantum computers</subject><subject>Security systems</subject><subject>Surveillance systems</subject><subject>Video</subject><subject>Videos</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRUGo_QS8Lnlv3X5LNUWOtQlEh9rxMNrOaUrtxkyL59m6NiKd5DO-9GX6EzDhbcM7y65uiWJblQjDBFpIxJnl6Qi4ET_O5TGR6-k-fk2nXbaOH6bhKsgtyt3SusQ3ue_qEXw--RVqEoe39W4D2faC30GFN78E2sKMl2kNo-oGWQ9fjB_V7CnT1srkkZw52HU5_54Rs7pevxcN8_bx6LG7Wc6uY7ucALOW20okVqdOgtVU5cszACs6TqDNe2TTTUEeFNVrpHHAmRJLnDCsnJ-Rx7K09bE0bmg8Ig_HQmJ-FD28GQt_YHRqXaqvxmGVCIYcKQYokQZanlZKRxYRcjV1t8J8H7Hqz9Yewj-8boRKllBBMRZccXTb4rgvo_q5yZo70zUjfHOmbX_oxNRtTDSL-JfJoF5mW32jvfqk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Duong-Ngoc, Phap</creator><creator>Tan, Tuy Nguyen</creator><creator>Lee, Hanho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9485-7720</orcidid><orcidid>https://orcid.org/0000-0001-8815-1927</orcidid><orcidid>https://orcid.org/0000-0002-0311-9387</orcidid></search><sort><creationdate>2020</creationdate><title>Efficient NewHope Cryptography Based Facial Security System on a GPU</title><author>Duong-Ngoc, Phap ; Tan, Tuy Nguyen ; Lee, Hanho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-aa061cb85c26f8a88c49e1e7ac211549e71bc678ade71edec3ffa10225990ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computers</topic><topic>Cryptography</topic><topic>Cryptosystem</topic><topic>Elliptic curve cryptography</topic><topic>Encryption</topic><topic>facial security system</topic><topic>graphics processing unit</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>NewHope</topic><topic>public-key encryption</topic><topic>Quantum computers</topic><topic>Security systems</topic><topic>Surveillance systems</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong-Ngoc, Phap</creatorcontrib><creatorcontrib>Tan, Tuy Nguyen</creatorcontrib><creatorcontrib>Lee, Hanho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong-Ngoc, Phap</au><au>Tan, Tuy Nguyen</au><au>Lee, Hanho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient NewHope Cryptography Based Facial Security System on a GPU</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>108158</spage><epage>108168</epage><pages>108158-108168</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[With explosive era of machine learning development, human data, such as biometric images, videos, and particularly facial information, have become an essential training resource. The popularity of video surveillance systems and growing use of facial images have increased the risk of leaking personal information. On the other hand, traditional cryptography systems are still expensive, time consuming, and low security, leading to be threatened by the foreseeable attacks of quantum computers. This paper proposes a novel approach to fully protect facial images extracted from videos based on a post-quantum cryptosystem named NewHope cryptography. Applying the proposed technique to arrange input data for encryption and decryption processes significantly reduces encryption and decryption times. The proposed facial security system was successfully accelerated using data-parallel computing model on the recently launched Nvidia GTX 2080Ti Graphics Processing Unit (GPU). Average face frame extracted from video (<inline-formula> <tex-math notation="LaTeX">190\times 190 </tex-math></inline-formula> pixel) required only <inline-formula> <tex-math notation="LaTeX">2.2~ms </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.7~ms </tex-math></inline-formula> total encryption and decryption times with security parameters <inline-formula> <tex-math notation="LaTeX">n=1024 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">n=2048 </tex-math></inline-formula>, respectively, which is approximately 9 times faster than previous approaches. Analysis results of security criteria proved that the proposed system offered comparable confidentiality to previous systems.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3000316</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9485-7720</orcidid><orcidid>https://orcid.org/0000-0001-8815-1927</orcidid><orcidid>https://orcid.org/0000-0002-0311-9387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.108158-108168
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454442204
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computers
Cryptography
Cryptosystem
Elliptic curve cryptography
Encryption
facial security system
graphics processing unit
Graphics processing units
Machine learning
NewHope
public-key encryption
Quantum computers
Security systems
Surveillance systems
Video
Videos
title Efficient NewHope Cryptography Based Facial Security System on a GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20NewHope%20Cryptography%20Based%20Facial%20Security%20System%20on%20a%20GPU&rft.jtitle=IEEE%20access&rft.au=Duong-Ngoc,%20Phap&rft.date=2020&rft.volume=8&rft.spage=108158&rft.epage=108168&rft.pages=108158-108168&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3000316&rft_dat=%3Cproquest_ieee_%3E2454442204%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454442204&rft_id=info:pmid/&rft_ieee_id=9109278&rft_doaj_id=oai_doaj_org_article_f68c8e0225024e1abea3255e096b4335&rfr_iscdi=true