Positive solutions of indefinite logistic growth models with flux-saturated diffusion

This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2020-12, Vol.201, p.111949, Article 111949
Hauptverfasser: Omari, Pierpaolo, Sovrano, Elisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111949
container_title Nonlinear analysis
container_volume 201
creator Omari, Pierpaolo
Sovrano, Elisa
description This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ>0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L>0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)>0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier’s law.
doi_str_mv 10.1016/j.na.2020.111949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454441220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X20301887</els_id><sourcerecordid>2454441220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4fbd5001e38e6530ff31046b395c155011bca30da92f7d254cd2802ca9144fa63</originalsourceid><addsrcrecordid>eNp1kMtLAzEQxoMoWKt3jwHPu-bdrjcpvqCgBwveQppHzbLd1CTb6n9vynr1NDPwfd_M_AC4xqjGCIvbtu5VTRApI8YNa07ABM9ntOIE81MwQVSQijPxcQ4uUmoRQnhGxQSs3kLy2e8tTKEbsg99gsFB3xvrfO-zhV3Y-JS9hpsYDvkTboOxXYIHX3rXDd9VUnmIKlsDjXduSCXjEpw51SV79VenYPX48L54rpavTy-L-2WlqWC5Ym5teLnE0rkVnCLnKEZMrGnDNeYcYbzWiiKjGuJmhnCmDZkjolWDGXNK0Cm4GXN3MXwNNmXZhiH2ZaUkjDPGMCGoqNCo0jGkFK2Tu-i3Kv5IjOQRnmxlr-QRnhzhFcvdaCmv2r23USbtba-t8dHqLE3w_5t_AXC_dvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454441220</pqid></control><display><type>article</type><title>Positive solutions of indefinite logistic growth models with flux-saturated diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Omari, Pierpaolo ; Sovrano, Elisa</creator><creatorcontrib>Omari, Pierpaolo ; Sovrano, Elisa</creatorcontrib><description>This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ&gt;0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L&gt;0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)&gt;0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier’s law.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2020.111949</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Bifurcations ; Boundary value problems ; Bounded variation solution ; Continuity (mathematics) ; Diffusion effects ; Dirichlet problem ; Flux ; Flux-saturated diffusion ; Fourier law ; Growth models ; Indefinite weight ; Logistic-type equation ; Mean curvature operator ; Operators (mathematics) ; Positive solution ; Strong solution</subject><ispartof>Nonlinear analysis, 2020-12, Vol.201, p.111949, Article 111949</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4fbd5001e38e6530ff31046b395c155011bca30da92f7d254cd2802ca9144fa63</citedby><cites>FETCH-LOGICAL-c364t-4fbd5001e38e6530ff31046b395c155011bca30da92f7d254cd2802ca9144fa63</cites><orcidid>0000-0002-3601-7627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X20301887$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Omari, Pierpaolo</creatorcontrib><creatorcontrib>Sovrano, Elisa</creatorcontrib><title>Positive solutions of indefinite logistic growth models with flux-saturated diffusion</title><title>Nonlinear analysis</title><description>This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ&gt;0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L&gt;0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)&gt;0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier’s law.</description><subject>Bifurcations</subject><subject>Boundary value problems</subject><subject>Bounded variation solution</subject><subject>Continuity (mathematics)</subject><subject>Diffusion effects</subject><subject>Dirichlet problem</subject><subject>Flux</subject><subject>Flux-saturated diffusion</subject><subject>Fourier law</subject><subject>Growth models</subject><subject>Indefinite weight</subject><subject>Logistic-type equation</subject><subject>Mean curvature operator</subject><subject>Operators (mathematics)</subject><subject>Positive solution</subject><subject>Strong solution</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQxoMoWKt3jwHPu-bdrjcpvqCgBwveQppHzbLd1CTb6n9vynr1NDPwfd_M_AC4xqjGCIvbtu5VTRApI8YNa07ABM9ntOIE81MwQVSQijPxcQ4uUmoRQnhGxQSs3kLy2e8tTKEbsg99gsFB3xvrfO-zhV3Y-JS9hpsYDvkTboOxXYIHX3rXDd9VUnmIKlsDjXduSCXjEpw51SV79VenYPX48L54rpavTy-L-2WlqWC5Ym5teLnE0rkVnCLnKEZMrGnDNeYcYbzWiiKjGuJmhnCmDZkjolWDGXNK0Cm4GXN3MXwNNmXZhiH2ZaUkjDPGMCGoqNCo0jGkFK2Tu-i3Kv5IjOQRnmxlr-QRnhzhFcvdaCmv2r23USbtba-t8dHqLE3w_5t_AXC_dvI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Omari, Pierpaolo</creator><creator>Sovrano, Elisa</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3601-7627</orcidid></search><sort><creationdate>202012</creationdate><title>Positive solutions of indefinite logistic growth models with flux-saturated diffusion</title><author>Omari, Pierpaolo ; Sovrano, Elisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4fbd5001e38e6530ff31046b395c155011bca30da92f7d254cd2802ca9144fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Boundary value problems</topic><topic>Bounded variation solution</topic><topic>Continuity (mathematics)</topic><topic>Diffusion effects</topic><topic>Dirichlet problem</topic><topic>Flux</topic><topic>Flux-saturated diffusion</topic><topic>Fourier law</topic><topic>Growth models</topic><topic>Indefinite weight</topic><topic>Logistic-type equation</topic><topic>Mean curvature operator</topic><topic>Operators (mathematics)</topic><topic>Positive solution</topic><topic>Strong solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omari, Pierpaolo</creatorcontrib><creatorcontrib>Sovrano, Elisa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omari, Pierpaolo</au><au>Sovrano, Elisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions of indefinite logistic growth models with flux-saturated diffusion</atitle><jtitle>Nonlinear analysis</jtitle><date>2020-12</date><risdate>2020</risdate><volume>201</volume><spage>111949</spage><pages>111949-</pages><artnum>111949</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ&gt;0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L&gt;0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)&gt;0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier’s law.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2020.111949</doi><orcidid>https://orcid.org/0000-0002-3601-7627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2020-12, Vol.201, p.111949, Article 111949
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2454441220
source Elsevier ScienceDirect Journals
subjects Bifurcations
Boundary value problems
Bounded variation solution
Continuity (mathematics)
Diffusion effects
Dirichlet problem
Flux
Flux-saturated diffusion
Fourier law
Growth models
Indefinite weight
Logistic-type equation
Mean curvature operator
Operators (mathematics)
Positive solution
Strong solution
title Positive solutions of indefinite logistic growth models with flux-saturated diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20of%20indefinite%20logistic%20growth%20models%20with%20flux-saturated%20diffusion&rft.jtitle=Nonlinear%20analysis&rft.au=Omari,%20Pierpaolo&rft.date=2020-12&rft.volume=201&rft.spage=111949&rft.pages=111949-&rft.artnum=111949&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2020.111949&rft_dat=%3Cproquest_cross%3E2454441220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454441220&rft_id=info:pmid/&rft_els_id=S0362546X20301887&rfr_iscdi=true