Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays

This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2020-11, Vol.57 (11), p.1652-1663
Hauptverfasser: Zapata-Medina, David G, Cortes-Garcia, Leon D, Finno, Richard J, Arboleda-Monsalve, Luis G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1663
container_issue 11
container_start_page 1652
container_title Canadian geotechnical journal
container_volume 57
creator Zapata-Medina, David G
Cortes-Garcia, Leon D
Finno, Richard J
Arboleda-Monsalve, Luis G
description This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.
doi_str_mv 10.1139/cgj-2019-0068
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2454440573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640984370</galeid><sourcerecordid>A640984370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKtH74ueVyfZbB7HWnxhwYN6Dmk22W7ZbtokFfrvTamgB8HTzDDfzDAfQpcYbjCu5K1plyUBLEsAJo7QCBMQJQMMx2gEkPOKcXqKzmJcAmBKCRmhl7fUOTfYGAs9NEVMwQ5tWuSiiz4Fv94V3hX-0wbjh-j7rtHJNsWd96m3bWtDMc3NwvR6F8_RidN9tBffcYw-Hu7fp0_l7PXxeTqZlaZiOJXcMskNd47ghgOXktI5odhqholtdD2vhRAgGlozQozAc1pLKZ0TGLhmRlZjdH3Yuw5-s7UxqaXfhiGfVITWlFKoefVDtbq3qhtcfkebVReNmjAKUtCKQ6au_qDMutuo31B5gEzwMQbr1Dp0Kx12CoPaq1dZvdqrV3v1mYcDPwQTbLQ6mMU_I1-0K4QF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454440573</pqid></control><display><type>article</type><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</creator><creatorcontrib>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</creatorcontrib><description>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2019-0068</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>anisotropie ; Anisotropy ; argile BCF ; BCF clay ; bender elements ; Bootlegging ; Clay ; Compression ; Compressive strength ; Elasticity ; Evaluation ; historique des contraintes ; In situ measurement ; Instrumentation ; Instruments ; Laboratories ; Laboratory tests ; Load cells ; Mechanical properties ; Observations ; onde de cisaillement ; Polarization ; Ratios ; reconsolidation ; Reproduction ; rigidité ; résistance ; S waves ; Shear strength ; shear wave ; Shear wave velocities ; Soil ; Soil stresses ; Soils ; Soundings ; Stiffness ; strength ; Strength of materials ; Stress history ; Stress propagation ; Submersibles ; Transducers ; Wave propagation ; Wave velocity ; éléments piézocéramiques</subject><ispartof>Canadian geotechnical journal, 2020-11, Vol.57 (11), p.1652-1663</ispartof><rights>COPYRIGHT 2020 NRC Research Press</rights><rights>2020 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</citedby><cites>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2019-0068$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2019-0068$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,27901,27902,64401,65207</link.rule.ids></links><search><creatorcontrib>Zapata-Medina, David G</creatorcontrib><creatorcontrib>Cortes-Garcia, Leon D</creatorcontrib><creatorcontrib>Finno, Richard J</creatorcontrib><creatorcontrib>Arboleda-Monsalve, Luis G</creatorcontrib><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><title>Canadian geotechnical journal</title><description>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</description><subject>anisotropie</subject><subject>Anisotropy</subject><subject>argile BCF</subject><subject>BCF clay</subject><subject>bender elements</subject><subject>Bootlegging</subject><subject>Clay</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Elasticity</subject><subject>Evaluation</subject><subject>historique des contraintes</subject><subject>In situ measurement</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Load cells</subject><subject>Mechanical properties</subject><subject>Observations</subject><subject>onde de cisaillement</subject><subject>Polarization</subject><subject>Ratios</subject><subject>reconsolidation</subject><subject>Reproduction</subject><subject>rigidité</subject><subject>résistance</subject><subject>S waves</subject><subject>Shear strength</subject><subject>shear wave</subject><subject>Shear wave velocities</subject><subject>Soil</subject><subject>Soil stresses</subject><subject>Soils</subject><subject>Soundings</subject><subject>Stiffness</subject><subject>strength</subject><subject>Strength of materials</subject><subject>Stress history</subject><subject>Stress propagation</subject><subject>Submersibles</subject><subject>Transducers</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><subject>éléments piézocéramiques</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKtH74ueVyfZbB7HWnxhwYN6Dmk22W7ZbtokFfrvTamgB8HTzDDfzDAfQpcYbjCu5K1plyUBLEsAJo7QCBMQJQMMx2gEkPOKcXqKzmJcAmBKCRmhl7fUOTfYGAs9NEVMwQ5tWuSiiz4Fv94V3hX-0wbjh-j7rtHJNsWd96m3bWtDMc3NwvR6F8_RidN9tBffcYw-Hu7fp0_l7PXxeTqZlaZiOJXcMskNd47ghgOXktI5odhqholtdD2vhRAgGlozQozAc1pLKZ0TGLhmRlZjdH3Yuw5-s7UxqaXfhiGfVITWlFKoefVDtbq3qhtcfkebVReNmjAKUtCKQ6au_qDMutuo31B5gEzwMQbr1Dp0Kx12CoPaq1dZvdqrV3v1mYcDPwQTbLQ6mMU_I1-0K4QF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zapata-Medina, David G</creator><creator>Cortes-Garcia, Leon D</creator><creator>Finno, Richard J</creator><creator>Arboleda-Monsalve, Luis G</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><author>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anisotropie</topic><topic>Anisotropy</topic><topic>argile BCF</topic><topic>BCF clay</topic><topic>bender elements</topic><topic>Bootlegging</topic><topic>Clay</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Elasticity</topic><topic>Evaluation</topic><topic>historique des contraintes</topic><topic>In situ measurement</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Load cells</topic><topic>Mechanical properties</topic><topic>Observations</topic><topic>onde de cisaillement</topic><topic>Polarization</topic><topic>Ratios</topic><topic>reconsolidation</topic><topic>Reproduction</topic><topic>rigidité</topic><topic>résistance</topic><topic>S waves</topic><topic>Shear strength</topic><topic>shear wave</topic><topic>Shear wave velocities</topic><topic>Soil</topic><topic>Soil stresses</topic><topic>Soils</topic><topic>Soundings</topic><topic>Stiffness</topic><topic>strength</topic><topic>Strength of materials</topic><topic>Stress history</topic><topic>Stress propagation</topic><topic>Submersibles</topic><topic>Transducers</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><topic>éléments piézocéramiques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zapata-Medina, David G</creatorcontrib><creatorcontrib>Cortes-Garcia, Leon D</creatorcontrib><creatorcontrib>Finno, Richard J</creatorcontrib><creatorcontrib>Arboleda-Monsalve, Luis G</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zapata-Medina, David G</au><au>Cortes-Garcia, Leon D</au><au>Finno, Richard J</au><au>Arboleda-Monsalve, Luis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>57</volume><issue>11</issue><spage>1652</spage><epage>1663</epage><pages>1652-1663</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2019-0068</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2020-11, Vol.57 (11), p.1652-1663
issn 0008-3674
1208-6010
language eng
recordid cdi_proquest_journals_2454440573
source NRC Research Press; Alma/SFX Local Collection
subjects anisotropie
Anisotropy
argile BCF
BCF clay
bender elements
Bootlegging
Clay
Compression
Compressive strength
Elasticity
Evaluation
historique des contraintes
In situ measurement
Instrumentation
Instruments
Laboratories
Laboratory tests
Load cells
Mechanical properties
Observations
onde de cisaillement
Polarization
Ratios
reconsolidation
Reproduction
rigidité
résistance
S waves
Shear strength
shear wave
Shear wave velocities
Soil
Soil stresses
Soils
Soundings
Stiffness
strength
Strength of materials
Stress history
Stress propagation
Submersibles
Transducers
Wave propagation
Wave velocity
éléments piézocéramiques
title Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness%20and%20strength%20anisotropy%20of%20overconsolidated%20Bootlegger%20Cove%20clays&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Zapata-Medina,%20David%20G&rft.date=2020-11-01&rft.volume=57&rft.issue=11&rft.spage=1652&rft.epage=1663&rft.pages=1652-1663&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2019-0068&rft_dat=%3Cgale_proqu%3EA640984370%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454440573&rft_id=info:pmid/&rft_galeid=A640984370&rfr_iscdi=true