Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays
This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2020-11, Vol.57 (11), p.1652-1663 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1663 |
---|---|
container_issue | 11 |
container_start_page | 1652 |
container_title | Canadian geotechnical journal |
container_volume | 57 |
creator | Zapata-Medina, David G Cortes-Garcia, Leon D Finno, Richard J Arboleda-Monsalve, Luis G |
description | This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay. |
doi_str_mv | 10.1139/cgj-2019-0068 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2454440573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640984370</galeid><sourcerecordid>A640984370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKtH74ueVyfZbB7HWnxhwYN6Dmk22W7ZbtokFfrvTamgB8HTzDDfzDAfQpcYbjCu5K1plyUBLEsAJo7QCBMQJQMMx2gEkPOKcXqKzmJcAmBKCRmhl7fUOTfYGAs9NEVMwQ5tWuSiiz4Fv94V3hX-0wbjh-j7rtHJNsWd96m3bWtDMc3NwvR6F8_RidN9tBffcYw-Hu7fp0_l7PXxeTqZlaZiOJXcMskNd47ghgOXktI5odhqholtdD2vhRAgGlozQozAc1pLKZ0TGLhmRlZjdH3Yuw5-s7UxqaXfhiGfVITWlFKoefVDtbq3qhtcfkebVReNmjAKUtCKQ6au_qDMutuo31B5gEzwMQbr1Dp0Kx12CoPaq1dZvdqrV3v1mYcDPwQTbLQ6mMU_I1-0K4QF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454440573</pqid></control><display><type>article</type><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</creator><creatorcontrib>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</creatorcontrib><description>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2019-0068</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>anisotropie ; Anisotropy ; argile BCF ; BCF clay ; bender elements ; Bootlegging ; Clay ; Compression ; Compressive strength ; Elasticity ; Evaluation ; historique des contraintes ; In situ measurement ; Instrumentation ; Instruments ; Laboratories ; Laboratory tests ; Load cells ; Mechanical properties ; Observations ; onde de cisaillement ; Polarization ; Ratios ; reconsolidation ; Reproduction ; rigidité ; résistance ; S waves ; Shear strength ; shear wave ; Shear wave velocities ; Soil ; Soil stresses ; Soils ; Soundings ; Stiffness ; strength ; Strength of materials ; Stress history ; Stress propagation ; Submersibles ; Transducers ; Wave propagation ; Wave velocity ; éléments piézocéramiques</subject><ispartof>Canadian geotechnical journal, 2020-11, Vol.57 (11), p.1652-1663</ispartof><rights>COPYRIGHT 2020 NRC Research Press</rights><rights>2020 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</citedby><cites>FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cgj-2019-0068$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cgj-2019-0068$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,27901,27902,64401,65207</link.rule.ids></links><search><creatorcontrib>Zapata-Medina, David G</creatorcontrib><creatorcontrib>Cortes-Garcia, Leon D</creatorcontrib><creatorcontrib>Finno, Richard J</creatorcontrib><creatorcontrib>Arboleda-Monsalve, Luis G</creatorcontrib><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><title>Canadian geotechnical journal</title><description>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</description><subject>anisotropie</subject><subject>Anisotropy</subject><subject>argile BCF</subject><subject>BCF clay</subject><subject>bender elements</subject><subject>Bootlegging</subject><subject>Clay</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Elasticity</subject><subject>Evaluation</subject><subject>historique des contraintes</subject><subject>In situ measurement</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Load cells</subject><subject>Mechanical properties</subject><subject>Observations</subject><subject>onde de cisaillement</subject><subject>Polarization</subject><subject>Ratios</subject><subject>reconsolidation</subject><subject>Reproduction</subject><subject>rigidité</subject><subject>résistance</subject><subject>S waves</subject><subject>Shear strength</subject><subject>shear wave</subject><subject>Shear wave velocities</subject><subject>Soil</subject><subject>Soil stresses</subject><subject>Soils</subject><subject>Soundings</subject><subject>Stiffness</subject><subject>strength</subject><subject>Strength of materials</subject><subject>Stress history</subject><subject>Stress propagation</subject><subject>Submersibles</subject><subject>Transducers</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><subject>éléments piézocéramiques</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKtH74ueVyfZbB7HWnxhwYN6Dmk22W7ZbtokFfrvTamgB8HTzDDfzDAfQpcYbjCu5K1plyUBLEsAJo7QCBMQJQMMx2gEkPOKcXqKzmJcAmBKCRmhl7fUOTfYGAs9NEVMwQ5tWuSiiz4Fv94V3hX-0wbjh-j7rtHJNsWd96m3bWtDMc3NwvR6F8_RidN9tBffcYw-Hu7fp0_l7PXxeTqZlaZiOJXcMskNd47ghgOXktI5odhqholtdD2vhRAgGlozQozAc1pLKZ0TGLhmRlZjdH3Yuw5-s7UxqaXfhiGfVITWlFKoefVDtbq3qhtcfkebVReNmjAKUtCKQ6au_qDMutuo31B5gEzwMQbr1Dp0Kx12CoPaq1dZvdqrV3v1mYcDPwQTbLQ6mMU_I1-0K4QF</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zapata-Medina, David G</creator><creator>Cortes-Garcia, Leon D</creator><creator>Finno, Richard J</creator><creator>Arboleda-Monsalve, Luis G</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</title><author>Zapata-Medina, David G ; Cortes-Garcia, Leon D ; Finno, Richard J ; Arboleda-Monsalve, Luis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7e697c7ff21d7079944b241ea612eda5b588808d45622c81b45999ff8107a6c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anisotropie</topic><topic>Anisotropy</topic><topic>argile BCF</topic><topic>BCF clay</topic><topic>bender elements</topic><topic>Bootlegging</topic><topic>Clay</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Elasticity</topic><topic>Evaluation</topic><topic>historique des contraintes</topic><topic>In situ measurement</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Load cells</topic><topic>Mechanical properties</topic><topic>Observations</topic><topic>onde de cisaillement</topic><topic>Polarization</topic><topic>Ratios</topic><topic>reconsolidation</topic><topic>Reproduction</topic><topic>rigidité</topic><topic>résistance</topic><topic>S waves</topic><topic>Shear strength</topic><topic>shear wave</topic><topic>Shear wave velocities</topic><topic>Soil</topic><topic>Soil stresses</topic><topic>Soils</topic><topic>Soundings</topic><topic>Stiffness</topic><topic>strength</topic><topic>Strength of materials</topic><topic>Stress history</topic><topic>Stress propagation</topic><topic>Submersibles</topic><topic>Transducers</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><topic>éléments piézocéramiques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zapata-Medina, David G</creatorcontrib><creatorcontrib>Cortes-Garcia, Leon D</creatorcontrib><creatorcontrib>Finno, Richard J</creatorcontrib><creatorcontrib>Arboleda-Monsalve, Luis G</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zapata-Medina, David G</au><au>Cortes-Garcia, Leon D</au><au>Finno, Richard J</au><au>Arboleda-Monsalve, Luis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>57</volume><issue>11</issue><spage>1652</spage><epage>1663</epage><pages>1652-1663</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>This paper presents the evaluation of the stiffness and strength anisotropy of overconsolidated (OC) Bootlegger Cove Formation (BCF) clays at the Port of Alaska, formerly known as the Port of Anchorage. The stiffness and strength anisotropic material response was evaluated based on triaxial samples equipped with internal instrumentation including a submersible load cell and three subminiature linear variable displacement transducers (LVDTs). Three sets of bender elements were used in this research to measure shear wave velocities for different propagation and polarization directions. The effects of reproducing the stress history of the soil deposit on the stiffness cross-anisotropic behavior of the material are discussed. The laboratory test results are compared with in situ measurements of shear wave velocities based on suspension logging and crosshole and downhole soundings. The results of the experimental program showed that BCF clay is a cross-anisotropic material. Mean stiffness anisotropy ratios ranged from 0.90 to 1.22 and 0.93 to 1.46 for lightly OC and OC conditions, respectively. Strength anisotropy ratios, defined as the ratio of undrained shear strength under triaxial extension to compression, varied between 0.8 and 0.5. It is found that reproducing the stress history of the OC soil deposit during the laboratory reconsolidation stage did not have a significant impact on the initial stiffness anisotropy ratios of the BCF clay.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2019-0068</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2020-11, Vol.57 (11), p.1652-1663 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_proquest_journals_2454440573 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | anisotropie Anisotropy argile BCF BCF clay bender elements Bootlegging Clay Compression Compressive strength Elasticity Evaluation historique des contraintes In situ measurement Instrumentation Instruments Laboratories Laboratory tests Load cells Mechanical properties Observations onde de cisaillement Polarization Ratios reconsolidation Reproduction rigidité résistance S waves Shear strength shear wave Shear wave velocities Soil Soil stresses Soils Soundings Stiffness strength Strength of materials Stress history Stress propagation Submersibles Transducers Wave propagation Wave velocity éléments piézocéramiques |
title | Stiffness and strength anisotropy of overconsolidated Bootlegger Cove clays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness%20and%20strength%20anisotropy%20of%20overconsolidated%20Bootlegger%20Cove%20clays&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Zapata-Medina,%20David%20G&rft.date=2020-11-01&rft.volume=57&rft.issue=11&rft.spage=1652&rft.epage=1663&rft.pages=1652-1663&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2019-0068&rft_dat=%3Cgale_proqu%3EA640984370%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454440573&rft_id=info:pmid/&rft_galeid=A640984370&rfr_iscdi=true |