Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition

In real application scenarios, the face images captured by cameras often incur blur, illumination variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time face recognition systems due to a big distribution difference between the captured degraded images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.97503-97515
Hauptverfasser: Zheng, Dongdong, Zhang, Kaibing, Lu, Jian, Jing, Junfeng, Xiong, Zenggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97515
container_issue
container_start_page 97503
container_title IEEE access
container_volume 8
creator Zheng, Dongdong
Zhang, Kaibing
Lu, Jian
Jing, Junfeng
Xiong, Zenggang
description In real application scenarios, the face images captured by cameras often incur blur, illumination variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time face recognition systems due to a big distribution difference between the captured degraded images and the high-resolution (HR) gallery images. As widespread application of transfer learning in across-visual recognition, we propose a novel active discriminative cross-domain alignment (ADCDA) technique for LR face recognition method by jointly exploring both geometrical and statistical properties of the source domain and the target domain in a unique way. Specifically, the proposed ADCDA-based method contains three key components: 1) it simultaneously reduces the domain shift in both marginal distribution and conditional distribution between the source domain and the target domain; 2) it aligns the data of two domains in the common latent subspace by discriminant locality alignment (DLA); 3) it selects the representative and the diverse samples with an active learning strategy to further improve classification performance. Extensive experiments on six benchmark databases verify that the proposed method significantly outperforms other state-of-the-art predecessors.
doi_str_mv 10.1109/ACCESS.2020.2996796
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454399816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9098902</ieee_id><doaj_id>oai_doaj_org_article_7b58a7ad1a5a4721a4040bfd551b4b25</doaj_id><sourcerecordid>2454399816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e365b1443c73c8bf0833e26756737365aaaf77d0fe582fc5f1d5dba66bc70f7d3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmP4CXwo-d-Y7zePoNh0MlKnP4TZNRsbWzLRT_Pdmdoj3JTcn95wc7smyO4wmGCP1MK2q-evrhCCCJkQpIZW4yEYEC1VQTsXlv_46u-26LUpVJojLUfYyNb3_tPnMdyb6vW_h91rF0HXFLOzBt_l05zft3rZ97kLMV-GrWNsu7I69D22-AGPztTVh0_oTcJNdOdh19vZ8jrP3xfyteipWz4_LaroqDENlX1gqeI0Zo0ZSU9YOlZRaIiQXksr0BgBOygY5y0viDHe44U0NQtRGIicbOs6Wg24TYKsPyTvEbx3A618gxI2G2Huzs1rWvAQJDQYOTBIMDDFUu4ZzXLOa8KR1P2gdYvg42q7X23CMbbKvCeOMKpXWlaboMGVOy4nW_f2KkT4loYck9CkJfU4ise4GlrfW_jEUUqVChP4ApvKEOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454399816</pqid></control><display><type>article</type><title>Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Dongdong ; Zhang, Kaibing ; Lu, Jian ; Jing, Junfeng ; Xiong, Zenggang</creator><creatorcontrib>Zheng, Dongdong ; Zhang, Kaibing ; Lu, Jian ; Jing, Junfeng ; Xiong, Zenggang</creatorcontrib><description>In real application scenarios, the face images captured by cameras often incur blur, illumination variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time face recognition systems due to a big distribution difference between the captured degraded images and the high-resolution (HR) gallery images. As widespread application of transfer learning in across-visual recognition, we propose a novel active discriminative cross-domain alignment (ADCDA) technique for LR face recognition method by jointly exploring both geometrical and statistical properties of the source domain and the target domain in a unique way. Specifically, the proposed ADCDA-based method contains three key components: 1) it simultaneously reduces the domain shift in both marginal distribution and conditional distribution between the source domain and the target domain; 2) it aligns the data of two domains in the common latent subspace by discriminant locality alignment (DLA); 3) it selects the representative and the diverse samples with an active learning strategy to further improve classification performance. Extensive experiments on six benchmark databases verify that the proposed method significantly outperforms other state-of-the-art predecessors.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2996796</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>active learning ; Alignment ; Dimensionality reduction ; discriminant locality alignment (DLA) ; domain adaptation ; Domains ; Face ; Face recognition ; Image reconstruction ; Image resolution ; Kernel ; Learning ; low-resolution (LR) face recognition ; Object recognition ; Occlusion ; Statistical methods ; Target recognition ; Task analysis ; Transfer learning ; Visual discrimination</subject><ispartof>IEEE access, 2020, Vol.8, p.97503-97515</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e365b1443c73c8bf0833e26756737365aaaf77d0fe582fc5f1d5dba66bc70f7d3</citedby><cites>FETCH-LOGICAL-c408t-e365b1443c73c8bf0833e26756737365aaaf77d0fe582fc5f1d5dba66bc70f7d3</cites><orcidid>0000-0002-3540-2996 ; 0000-0002-3770-017X ; 0000-0003-4467-9599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9098902$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zheng, Dongdong</creatorcontrib><creatorcontrib>Zhang, Kaibing</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Jing, Junfeng</creatorcontrib><creatorcontrib>Xiong, Zenggang</creatorcontrib><title>Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>In real application scenarios, the face images captured by cameras often incur blur, illumination variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time face recognition systems due to a big distribution difference between the captured degraded images and the high-resolution (HR) gallery images. As widespread application of transfer learning in across-visual recognition, we propose a novel active discriminative cross-domain alignment (ADCDA) technique for LR face recognition method by jointly exploring both geometrical and statistical properties of the source domain and the target domain in a unique way. Specifically, the proposed ADCDA-based method contains three key components: 1) it simultaneously reduces the domain shift in both marginal distribution and conditional distribution between the source domain and the target domain; 2) it aligns the data of two domains in the common latent subspace by discriminant locality alignment (DLA); 3) it selects the representative and the diverse samples with an active learning strategy to further improve classification performance. Extensive experiments on six benchmark databases verify that the proposed method significantly outperforms other state-of-the-art predecessors.</description><subject>active learning</subject><subject>Alignment</subject><subject>Dimensionality reduction</subject><subject>discriminant locality alignment (DLA)</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Face</subject><subject>Face recognition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>Learning</subject><subject>low-resolution (LR) face recognition</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Statistical methods</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>Visual discrimination</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmP4CXwo-d-Y7zePoNh0MlKnP4TZNRsbWzLRT_Pdmdoj3JTcn95wc7smyO4wmGCP1MK2q-evrhCCCJkQpIZW4yEYEC1VQTsXlv_46u-26LUpVJojLUfYyNb3_tPnMdyb6vW_h91rF0HXFLOzBt_l05zft3rZ97kLMV-GrWNsu7I69D22-AGPztTVh0_oTcJNdOdh19vZ8jrP3xfyteipWz4_LaroqDENlX1gqeI0Zo0ZSU9YOlZRaIiQXksr0BgBOygY5y0viDHe44U0NQtRGIicbOs6Wg24TYKsPyTvEbx3A618gxI2G2Huzs1rWvAQJDQYOTBIMDDFUu4ZzXLOa8KR1P2gdYvg42q7X23CMbbKvCeOMKpXWlaboMGVOy4nW_f2KkT4loYck9CkJfU4ise4GlrfW_jEUUqVChP4ApvKEOA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zheng, Dongdong</creator><creator>Zhang, Kaibing</creator><creator>Lu, Jian</creator><creator>Jing, Junfeng</creator><creator>Xiong, Zenggang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3540-2996</orcidid><orcidid>https://orcid.org/0000-0002-3770-017X</orcidid><orcidid>https://orcid.org/0000-0003-4467-9599</orcidid></search><sort><creationdate>2020</creationdate><title>Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition</title><author>Zheng, Dongdong ; Zhang, Kaibing ; Lu, Jian ; Jing, Junfeng ; Xiong, Zenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e365b1443c73c8bf0833e26756737365aaaf77d0fe582fc5f1d5dba66bc70f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active learning</topic><topic>Alignment</topic><topic>Dimensionality reduction</topic><topic>discriminant locality alignment (DLA)</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Face</topic><topic>Face recognition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>Learning</topic><topic>low-resolution (LR) face recognition</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Statistical methods</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Dongdong</creatorcontrib><creatorcontrib>Zhang, Kaibing</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Jing, Junfeng</creatorcontrib><creatorcontrib>Xiong, Zenggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Dongdong</au><au>Zhang, Kaibing</au><au>Lu, Jian</au><au>Jing, Junfeng</au><au>Xiong, Zenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>97503</spage><epage>97515</epage><pages>97503-97515</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In real application scenarios, the face images captured by cameras often incur blur, illumination variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time face recognition systems due to a big distribution difference between the captured degraded images and the high-resolution (HR) gallery images. As widespread application of transfer learning in across-visual recognition, we propose a novel active discriminative cross-domain alignment (ADCDA) technique for LR face recognition method by jointly exploring both geometrical and statistical properties of the source domain and the target domain in a unique way. Specifically, the proposed ADCDA-based method contains three key components: 1) it simultaneously reduces the domain shift in both marginal distribution and conditional distribution between the source domain and the target domain; 2) it aligns the data of two domains in the common latent subspace by discriminant locality alignment (DLA); 3) it selects the representative and the diverse samples with an active learning strategy to further improve classification performance. Extensive experiments on six benchmark databases verify that the proposed method significantly outperforms other state-of-the-art predecessors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2996796</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3540-2996</orcidid><orcidid>https://orcid.org/0000-0002-3770-017X</orcidid><orcidid>https://orcid.org/0000-0003-4467-9599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.97503-97515
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454399816
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects active learning
Alignment
Dimensionality reduction
discriminant locality alignment (DLA)
domain adaptation
Domains
Face
Face recognition
Image reconstruction
Image resolution
Kernel
Learning
low-resolution (LR) face recognition
Object recognition
Occlusion
Statistical methods
Target recognition
Task analysis
Transfer learning
Visual discrimination
title Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Discriminative%20Cross-Domain%20Alignment%20for%20Low-Resolution%20Face%20Recognition&rft.jtitle=IEEE%20access&rft.au=Zheng,%20Dongdong&rft.date=2020&rft.volume=8&rft.spage=97503&rft.epage=97515&rft.pages=97503-97515&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2996796&rft_dat=%3Cproquest_doaj_%3E2454399816%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454399816&rft_id=info:pmid/&rft_ieee_id=9098902&rft_doaj_id=oai_doaj_org_article_7b58a7ad1a5a4721a4040bfd551b4b25&rfr_iscdi=true