Objective barriers to the transport of dynamically active vector fields

We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-12, Vol.905, Article A17
Hauptverfasser: Haller, George, Katsanoulis, Stergios, Holzner, Markus, Frohnapfel, Bettina, Gatti, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 905
creator Haller, George
Katsanoulis, Stergios
Holzner, Markus
Frohnapfel, Bettina
Gatti, Davide
description We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible barrier equation, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective Eulerian active barriers to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved LCS and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.
doi_str_mv 10.1017/jfm.2020.737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454345603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_737</cupid><sourcerecordid>2454345603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9ad6d18d202084a7bf70a4f8ec1cce402494e8a6ab4d95347be212191fa3e53f3</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqWw8QMssZLw_JE4GVEFBalSF5gtJ36GREldbLdS_z2pWomF6S3n3nd1CLlnkDNg6ql3Y86BQ66EuiAzJss6U6UsLskMgPOMMQ7X5CbGHoAJqNWMLNdNj23q9kgbE0KHIdLkafpGmoLZxK0PiXpH7WFjxq41w3Cg5sTvp5wP1HU42HhLrpwZIt6d75x8vr58LN6y1Xr5vnheZa2QkLLa2NKyyh5XVtKoxikw0lXYsrZFCVzWEitTmkbauhBSNcgZZzVzRmAhnJiTh1PvNvifHcake78Lm-ml5rKQQhYliIl6PFFt8DEGdHobutGEg2agj6r0pEofR-hJ1YTnZ9yMTejsF_61_hv4BSSOa20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454345603</pqid></control><display><type>article</type><title>Objective barriers to the transport of dynamically active vector fields</title><source>Cambridge University Press Journals Complete</source><creator>Haller, George ; Katsanoulis, Stergios ; Holzner, Markus ; Frohnapfel, Bettina ; Gatti, Davide</creator><creatorcontrib>Haller, George ; Katsanoulis, Stergios ; Holzner, Markus ; Frohnapfel, Bettina ; Gatti, Davide</creatorcontrib><description>We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible barrier equation, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective Eulerian active barriers to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved LCS and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.737</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Angular momentum ; Beltrami flow ; Boundaries ; Channel flow ; Coherence ; Fields (mathematics) ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Incompressible flow ; Isotropic turbulence ; JFM Papers ; Liapunov exponents ; Momentum ; Physics ; Surface chemistry ; Three dimensional flow ; Transport ; Turbulence ; Turbulent flow ; Velocity ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.905, Article A17</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9ad6d18d202084a7bf70a4f8ec1cce402494e8a6ab4d95347be212191fa3e53f3</citedby><cites>FETCH-LOGICAL-c340t-9ad6d18d202084a7bf70a4f8ec1cce402494e8a6ab4d95347be212191fa3e53f3</cites><orcidid>0000-0002-1186-5937 ; 0000-0003-1260-877X ; 0000-0002-0594-7178 ; 0000-0002-8178-9626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020007375/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Katsanoulis, Stergios</creatorcontrib><creatorcontrib>Holzner, Markus</creatorcontrib><creatorcontrib>Frohnapfel, Bettina</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><title>Objective barriers to the transport of dynamically active vector fields</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible barrier equation, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective Eulerian active barriers to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved LCS and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.</description><subject>Angular momentum</subject><subject>Beltrami flow</subject><subject>Boundaries</subject><subject>Channel flow</subject><subject>Coherence</subject><subject>Fields (mathematics)</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Incompressible flow</subject><subject>Isotropic turbulence</subject><subject>JFM Papers</subject><subject>Liapunov exponents</subject><subject>Momentum</subject><subject>Physics</subject><subject>Surface chemistry</subject><subject>Three dimensional flow</subject><subject>Transport</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAURS0EEqWw8QMssZLw_JE4GVEFBalSF5gtJ36GREldbLdS_z2pWomF6S3n3nd1CLlnkDNg6ql3Y86BQ66EuiAzJss6U6UsLskMgPOMMQ7X5CbGHoAJqNWMLNdNj23q9kgbE0KHIdLkafpGmoLZxK0PiXpH7WFjxq41w3Cg5sTvp5wP1HU42HhLrpwZIt6d75x8vr58LN6y1Xr5vnheZa2QkLLa2NKyyh5XVtKoxikw0lXYsrZFCVzWEitTmkbauhBSNcgZZzVzRmAhnJiTh1PvNvifHcake78Lm-ml5rKQQhYliIl6PFFt8DEGdHobutGEg2agj6r0pEofR-hJ1YTnZ9yMTejsF_61_hv4BSSOa20</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Haller, George</creator><creator>Katsanoulis, Stergios</creator><creator>Holzner, Markus</creator><creator>Frohnapfel, Bettina</creator><creator>Gatti, Davide</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1186-5937</orcidid><orcidid>https://orcid.org/0000-0003-1260-877X</orcidid><orcidid>https://orcid.org/0000-0002-0594-7178</orcidid><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid></search><sort><creationdate>20201225</creationdate><title>Objective barriers to the transport of dynamically active vector fields</title><author>Haller, George ; Katsanoulis, Stergios ; Holzner, Markus ; Frohnapfel, Bettina ; Gatti, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9ad6d18d202084a7bf70a4f8ec1cce402494e8a6ab4d95347be212191fa3e53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular momentum</topic><topic>Beltrami flow</topic><topic>Boundaries</topic><topic>Channel flow</topic><topic>Coherence</topic><topic>Fields (mathematics)</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Incompressible flow</topic><topic>Isotropic turbulence</topic><topic>JFM Papers</topic><topic>Liapunov exponents</topic><topic>Momentum</topic><topic>Physics</topic><topic>Surface chemistry</topic><topic>Three dimensional flow</topic><topic>Transport</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Katsanoulis, Stergios</creatorcontrib><creatorcontrib>Holzner, Markus</creatorcontrib><creatorcontrib>Frohnapfel, Bettina</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haller, George</au><au>Katsanoulis, Stergios</au><au>Holzner, Markus</au><au>Frohnapfel, Bettina</au><au>Gatti, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Objective barriers to the transport of dynamically active vector fields</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>905</volume><artnum>A17</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible barrier equation, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective Eulerian active barriers to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved LCS and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.737</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-1186-5937</orcidid><orcidid>https://orcid.org/0000-0003-1260-877X</orcidid><orcidid>https://orcid.org/0000-0002-0594-7178</orcidid><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-12, Vol.905, Article A17
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2454345603
source Cambridge University Press Journals Complete
subjects Angular momentum
Beltrami flow
Boundaries
Channel flow
Coherence
Fields (mathematics)
Fluid dynamics
Fluid flow
Fluid mechanics
Incompressible flow
Isotropic turbulence
JFM Papers
Liapunov exponents
Momentum
Physics
Surface chemistry
Three dimensional flow
Transport
Turbulence
Turbulent flow
Velocity
Vortices
Vorticity
title Objective barriers to the transport of dynamically active vector fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Objective%20barriers%20to%20the%20transport%20of%20dynamically%20active%20vector%20fields&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Haller,%20George&rft.date=2020-12-25&rft.volume=905&rft.artnum=A17&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.737&rft_dat=%3Cproquest_cross%3E2454345603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454345603&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_737&rfr_iscdi=true