Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron
The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S-2(-), and S-6(2-)) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-10, Vol.54 (20), p.13294-13303 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13303 |
---|---|
container_issue | 20 |
container_start_page | 13294 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Xu, Jiang Avellan, Astrid Li, Hao Clark, Elizabeth A. Henkelman, Graeme Kaegi, Ralf Lowry, Gregory |
description | The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S-2(-), and S-6(2-)) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe-0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (similar to 2-3 fold) and TCE (similar to 5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S-2(-)/S-6(2)-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials. |
doi_str_mv | 10.1021/acs.est.0c03879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2454195623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454195623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5550e86825ee5cb5aa599551bb2fbc463bddcdf03e954fcbc54be1580127f8683</originalsourceid><addsrcrecordid>eNqNkc9v0zAYhi3ExMrgzA1Z4oRYOv_IlybHKgI2qdoQBQlxiRzns_CUxZ3tFBX-eZy29LyTP1nP89r6XkLecDbnTPArpcMcQ5wzzWS5qJ6RGQfBMiiBPyczxrjMKln8OCcvQ7hnjAnJyhfkXIqqKFhezcjfG-8GqoaOrsfejJ5-8ahHH5wPdGkM6khrvwtR9b0dkK6jH3UcPV7S9Qa1VdG64XLvf0Wlo93auKPO7NNsZ_9gR2_V4IJWPdKf6N02DUOk07OvyJlRfcDXx_OCfP_08Vt9na3uPt_Uy1WmJVQxAwCGZVEKQATdglJQVQC8bYVpdV7Itut0Z5jECnKjWw15ixxKxsXCJE9ekPeH3F-qbzbePii_a5yyzfVy1Ux3TC5YKYFteWLfHdiNd49jWm1z70Y_pO81IoecV1AImairA6W9C8GjOcVy1kzFNKmYZrKPxSTj7TF3bB-wO_H_m0hAeQB-Y-tM0BYHjScsVQdlngsB08RrG_ebr904xKR-eLoq_wEFVqyD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454195623</pqid></control><display><type>article</type><title>Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Xu, Jiang ; Avellan, Astrid ; Li, Hao ; Clark, Elizabeth A. ; Henkelman, Graeme ; Kaegi, Ralf ; Lowry, Gregory</creator><creatorcontrib>Xu, Jiang ; Avellan, Astrid ; Li, Hao ; Clark, Elizabeth A. ; Henkelman, Graeme ; Kaegi, Ralf ; Lowry, Gregory</creatorcontrib><description>The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S-2(-), and S-6(2-)) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe-0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (similar to 2-3 fold) and TCE (similar to 5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S-2(-)/S-6(2)-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03879</identifier><identifier>PMID: 32966049</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Absorption spectroscopy ; Body centered cubic lattice ; Chemical Sciences ; Crystal structure ; Crystallinity ; Engineering ; Engineering, Environmental ; Environmental Sciences ; Environmental Sciences & Ecology ; Hydrophobicity ; Iron ; Iron sulfides ; Life Sciences & Biomedicine ; Physicochemical properties ; Precursors ; Pyrite ; Reactivity ; Science & Technology ; Selectivity ; Speciation ; Species ; Sulfur ; Technology ; Trichloroethylene ; Water ; Water Pollutants, Chemical ; X ray absorption ; X-ray absorption spectroscopy ; X-ray diffraction</subject><ispartof>Environmental science & technology, 2020-10, Vol.54 (20), p.13294-13303</ispartof><rights>Copyright American Chemical Society Oct 20, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>140</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000584422500051</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c359t-5550e86825ee5cb5aa599551bb2fbc463bddcdf03e954fcbc54be1580127f8683</citedby><cites>FETCH-LOGICAL-c359t-5550e86825ee5cb5aa599551bb2fbc463bddcdf03e954fcbc54be1580127f8683</cites><orcidid>0000-0001-6081-4389 ; 0000-0002-2430-4733 ; 0000-0002-7577-1366 ; 0000-0003-0369-4848 ; 0000-0001-8599-008X ; 0000-0002-0336-7153 ; 0000-0003-2669-3047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2766,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32966049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ut3-toulouseinp.hal.science/hal-03708350$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiang</creatorcontrib><creatorcontrib>Avellan, Astrid</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Clark, Elizabeth A.</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Kaegi, Ralf</creatorcontrib><creatorcontrib>Lowry, Gregory</creatorcontrib><title>Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron</title><title>Environmental science & technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ Sci Technol</addtitle><description>The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S-2(-), and S-6(2-)) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe-0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (similar to 2-3 fold) and TCE (similar to 5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S-2(-)/S-6(2)-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials.</description><subject>Absorption spectroscopy</subject><subject>Body centered cubic lattice</subject><subject>Chemical Sciences</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Hydrophobicity</subject><subject>Iron</subject><subject>Iron sulfides</subject><subject>Life Sciences & Biomedicine</subject><subject>Physicochemical properties</subject><subject>Precursors</subject><subject>Pyrite</subject><subject>Reactivity</subject><subject>Science & Technology</subject><subject>Selectivity</subject><subject>Speciation</subject><subject>Species</subject><subject>Sulfur</subject><subject>Technology</subject><subject>Trichloroethylene</subject><subject>Water</subject><subject>Water Pollutants, Chemical</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9v0zAYhi3ExMrgzA1Z4oRYOv_IlybHKgI2qdoQBQlxiRzns_CUxZ3tFBX-eZy29LyTP1nP89r6XkLecDbnTPArpcMcQ5wzzWS5qJ6RGQfBMiiBPyczxrjMKln8OCcvQ7hnjAnJyhfkXIqqKFhezcjfG-8GqoaOrsfejJ5-8ahHH5wPdGkM6khrvwtR9b0dkK6jH3UcPV7S9Qa1VdG64XLvf0Wlo93auKPO7NNsZ_9gR2_V4IJWPdKf6N02DUOk07OvyJlRfcDXx_OCfP_08Vt9na3uPt_Uy1WmJVQxAwCGZVEKQATdglJQVQC8bYVpdV7Itut0Z5jECnKjWw15ixxKxsXCJE9ekPeH3F-qbzbePii_a5yyzfVy1Ux3TC5YKYFteWLfHdiNd49jWm1z70Y_pO81IoecV1AImairA6W9C8GjOcVy1kzFNKmYZrKPxSTj7TF3bB-wO_H_m0hAeQB-Y-tM0BYHjScsVQdlngsB08RrG_ebr904xKR-eLoq_wEFVqyD</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Xu, Jiang</creator><creator>Avellan, Astrid</creator><creator>Li, Hao</creator><creator>Clark, Elizabeth A.</creator><creator>Henkelman, Graeme</creator><creator>Kaegi, Ralf</creator><creator>Lowry, Gregory</creator><general>Amer Chemical Soc</general><general>American Chemical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6081-4389</orcidid><orcidid>https://orcid.org/0000-0002-2430-4733</orcidid><orcidid>https://orcid.org/0000-0002-7577-1366</orcidid><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0001-8599-008X</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0003-2669-3047</orcidid></search><sort><creationdate>20201020</creationdate><title>Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron</title><author>Xu, Jiang ; Avellan, Astrid ; Li, Hao ; Clark, Elizabeth A. ; Henkelman, Graeme ; Kaegi, Ralf ; Lowry, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5550e86825ee5cb5aa599551bb2fbc463bddcdf03e954fcbc54be1580127f8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Body centered cubic lattice</topic><topic>Chemical Sciences</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Hydrophobicity</topic><topic>Iron</topic><topic>Iron sulfides</topic><topic>Life Sciences & Biomedicine</topic><topic>Physicochemical properties</topic><topic>Precursors</topic><topic>Pyrite</topic><topic>Reactivity</topic><topic>Science & Technology</topic><topic>Selectivity</topic><topic>Speciation</topic><topic>Species</topic><topic>Sulfur</topic><topic>Technology</topic><topic>Trichloroethylene</topic><topic>Water</topic><topic>Water Pollutants, Chemical</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiang</creatorcontrib><creatorcontrib>Avellan, Astrid</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Clark, Elizabeth A.</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Kaegi, Ralf</creatorcontrib><creatorcontrib>Lowry, Gregory</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiang</au><au>Avellan, Astrid</au><au>Li, Hao</au><au>Clark, Elizabeth A.</au><au>Henkelman, Graeme</au><au>Kaegi, Ralf</au><au>Lowry, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron</atitle><jtitle>Environmental science & technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ Sci Technol</addtitle><date>2020-10-20</date><risdate>2020</risdate><volume>54</volume><issue>20</issue><spage>13294</spage><epage>13303</epage><pages>13294-13303</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S-2(-), and S-6(2-)) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe-0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (similar to 2-3 fold) and TCE (similar to 5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S-2(-)/S-6(2)-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>32966049</pmid><doi>10.1021/acs.est.0c03879</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6081-4389</orcidid><orcidid>https://orcid.org/0000-0002-2430-4733</orcidid><orcidid>https://orcid.org/0000-0002-7577-1366</orcidid><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0001-8599-008X</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0003-2669-3047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-10, Vol.54 (20), p.13294-13303 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2454195623 |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Absorption spectroscopy Body centered cubic lattice Chemical Sciences Crystal structure Crystallinity Engineering Engineering, Environmental Environmental Sciences Environmental Sciences & Ecology Hydrophobicity Iron Iron sulfides Life Sciences & Biomedicine Physicochemical properties Precursors Pyrite Reactivity Science & Technology Selectivity Speciation Species Sulfur Technology Trichloroethylene Water Water Pollutants, Chemical X ray absorption X-ray absorption spectroscopy X-ray diffraction |
title | Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20and%20Sulfur%20Precursors%20Affect%20Crystalline%20Structure,%20Speciation,%20and%20Reactivity%20of%20Sulfidized%20Nanoscale%20Zerovalent%20Iron&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xu,%20Jiang&rft.date=2020-10-20&rft.volume=54&rft.issue=20&rft.spage=13294&rft.epage=13303&rft.pages=13294-13303&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03879&rft_dat=%3Cproquest_pubme%3E2454195623%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454195623&rft_id=info:pmid/32966049&rfr_iscdi=true |