Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr

The Antarctic Ice Sheet (AIS) is the largest potential source for future global sea level rise. However, there are widely diverging estimates of its contribution, which emphasizes the need to improve our understanding of the long‐term behavior of the AIS and its impact on the solid Earth. This knowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2020-10, Vol.125 (10), p.n/a
Hauptverfasser: Gao, Yuesong, Yang, Lianjiao, Mei, Yanjun, Chu, Zhuding, Yang, Wenqing, Xu, Qibin, Chen, Guangjie, Xie, Zhouqing, Sun, Liguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Journal of geophysical research. Solid earth
container_volume 125
creator Gao, Yuesong
Yang, Lianjiao
Mei, Yanjun
Chu, Zhuding
Yang, Wenqing
Xu, Qibin
Chen, Guangjie
Xie, Zhouqing
Sun, Liguang
description The Antarctic Ice Sheet (AIS) is the largest potential source for future global sea level rise. However, there are widely diverging estimates of its contribution, which emphasizes the need to improve our understanding of the long‐term behavior of the AIS and its impact on the solid Earth. This knowledge gap results from a shortage of records of glacial history, especially for the pre‐Holocene. Marine transgression and recession in the coastal areas of Antarctica are influenced by the mass of the overlying ice, providing crucial information about regional ice sheet dynamics. In this study, we determined a marine transgression from 53 kyr BP onward by diatom assemblages and a δ13C‐C/N biplot for the organic component in a sediment core (MCM2), from the Larsemann Hills in East Antarctica. Relative sea level (RSL) reached a maximum of ~12 m a.p.s.l. (above present sea level) during 38–29 kyr BP. Concurrent with the transgression, the regional crust experienced glacial‐isostatic‐adjustment (GIA)‐induced subsidence from ~75 to ~95 m beneath the present land level, suggesting an expansion trend of the East Antarctic ice sheet (EAIS), which may have outpaced global cooling. After the last deglaciation, the RSL rose to a highstand of ~8–10 m a.p.s.l. at ~8.5–7.1 kyr BP, when the bedrock uplifted to ~20 m below the present level. After 4.0 kyr BP, both regional and global deglaciation ceased, but an effect of ongoing relaxation caused the land to rebound continuously at a uniform rate of ~1.5 m/kyr, which can account for the sustained fall of RSL across Antarctica since mid‐Holocene. Key Points A marine transgression period was constrained to 53–29 kyr BP at the Larsemann Hills, East Antarctica We provide a synthesis of the relative sea level changes and GIA‐induced displacement of the Larsemann Hills in the last 50 kyr The ongoing relaxation process of GIA account for the sustained fall of the relative sea level since mid‐Holocene
doi_str_mv 10.1029/2020JB020167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454195219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454195219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3303-517794db5d8795d115adc83a7b90bf5c2bfe682c5a8197d5e7033a3db2fa66843</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EElXpjgNYYkvAv3G87A-0qSohUVhHTuy0KalT7ESoO47AETgLR-EkGBUhVsxi5mnm0xvpAXCO0RVGRF4TRNB8FBqOxRHoERzLSFIeH_9qTE_BwPsNCpWEFWY9sEoLA5drY1o4Xiu7Mh4qq-E0HX6-vqVWd4XRcNm5UgVuUvldHcTW2BY2JWzXBi6U82arrIWzqq49nHSusqufk28hRx_vT3t3Bk5KVXsz-Jl98Hh78zCeRYu7aToeLiJFKaIRx0JIpnOuEyG5xpgrXSRUiVyivOQFyUsTJ6TgKsFSaG4EolRRnZNSxXHCaB9cHHx3rnnujG-zTdM5G15mhHGGJSdYBuryQBWu8d6ZMtu5aqvcPsMo-04z-5tmwOkBf6lqs_-XzebT-xFnTFD6BabldTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454195219</pqid></control><display><type>article</type><title>Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Gao, Yuesong ; Yang, Lianjiao ; Mei, Yanjun ; Chu, Zhuding ; Yang, Wenqing ; Xu, Qibin ; Chen, Guangjie ; Xie, Zhouqing ; Sun, Liguang</creator><creatorcontrib>Gao, Yuesong ; Yang, Lianjiao ; Mei, Yanjun ; Chu, Zhuding ; Yang, Wenqing ; Xu, Qibin ; Chen, Guangjie ; Xie, Zhouqing ; Sun, Liguang</creatorcontrib><description>The Antarctic Ice Sheet (AIS) is the largest potential source for future global sea level rise. However, there are widely diverging estimates of its contribution, which emphasizes the need to improve our understanding of the long‐term behavior of the AIS and its impact on the solid Earth. This knowledge gap results from a shortage of records of glacial history, especially for the pre‐Holocene. Marine transgression and recession in the coastal areas of Antarctica are influenced by the mass of the overlying ice, providing crucial information about regional ice sheet dynamics. In this study, we determined a marine transgression from 53 kyr BP onward by diatom assemblages and a δ13C‐C/N biplot for the organic component in a sediment core (MCM2), from the Larsemann Hills in East Antarctica. Relative sea level (RSL) reached a maximum of ~12 m a.p.s.l. (above present sea level) during 38–29 kyr BP. Concurrent with the transgression, the regional crust experienced glacial‐isostatic‐adjustment (GIA)‐induced subsidence from ~75 to ~95 m beneath the present land level, suggesting an expansion trend of the East Antarctic ice sheet (EAIS), which may have outpaced global cooling. After the last deglaciation, the RSL rose to a highstand of ~8–10 m a.p.s.l. at ~8.5–7.1 kyr BP, when the bedrock uplifted to ~20 m below the present level. After 4.0 kyr BP, both regional and global deglaciation ceased, but an effect of ongoing relaxation caused the land to rebound continuously at a uniform rate of ~1.5 m/kyr, which can account for the sustained fall of RSL across Antarctica since mid‐Holocene. Key Points A marine transgression period was constrained to 53–29 kyr BP at the Larsemann Hills, East Antarctica We provide a synthesis of the relative sea level changes and GIA‐induced displacement of the Larsemann Hills in the last 50 kyr The ongoing relaxation process of GIA account for the sustained fall of the relative sea level since mid‐Holocene</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2020JB020167</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Antarctic ice sheet ; Bedrock ; Coastal zone ; Deglaciation ; Diatoms ; East Antarctica ; Geophysics ; glacial isostatic adjustment ; Glacial periods ; Glaciation ; Global cooling ; Global sea level ; Holocene ; Ice ; Ice sheet dynamics ; Ice sheets ; Larsemann Hills ; marine isotope stage 3 ; marine transgression ; Meltwater ; relative sea level ; Sea level ; Sea level rise</subject><ispartof>Journal of geophysical research. Solid earth, 2020-10, Vol.125 (10), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3303-517794db5d8795d115adc83a7b90bf5c2bfe682c5a8197d5e7033a3db2fa66843</citedby><cites>FETCH-LOGICAL-a3303-517794db5d8795d115adc83a7b90bf5c2bfe682c5a8197d5e7033a3db2fa66843</cites><orcidid>0000-0003-1703-5157 ; 0000-0003-1937-2026 ; 0000-0001-8035-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JB020167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JB020167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids></links><search><creatorcontrib>Gao, Yuesong</creatorcontrib><creatorcontrib>Yang, Lianjiao</creatorcontrib><creatorcontrib>Mei, Yanjun</creatorcontrib><creatorcontrib>Chu, Zhuding</creatorcontrib><creatorcontrib>Yang, Wenqing</creatorcontrib><creatorcontrib>Xu, Qibin</creatorcontrib><creatorcontrib>Chen, Guangjie</creatorcontrib><creatorcontrib>Xie, Zhouqing</creatorcontrib><creatorcontrib>Sun, Liguang</creatorcontrib><title>Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr</title><title>Journal of geophysical research. Solid earth</title><description>The Antarctic Ice Sheet (AIS) is the largest potential source for future global sea level rise. However, there are widely diverging estimates of its contribution, which emphasizes the need to improve our understanding of the long‐term behavior of the AIS and its impact on the solid Earth. This knowledge gap results from a shortage of records of glacial history, especially for the pre‐Holocene. Marine transgression and recession in the coastal areas of Antarctica are influenced by the mass of the overlying ice, providing crucial information about regional ice sheet dynamics. In this study, we determined a marine transgression from 53 kyr BP onward by diatom assemblages and a δ13C‐C/N biplot for the organic component in a sediment core (MCM2), from the Larsemann Hills in East Antarctica. Relative sea level (RSL) reached a maximum of ~12 m a.p.s.l. (above present sea level) during 38–29 kyr BP. Concurrent with the transgression, the regional crust experienced glacial‐isostatic‐adjustment (GIA)‐induced subsidence from ~75 to ~95 m beneath the present land level, suggesting an expansion trend of the East Antarctic ice sheet (EAIS), which may have outpaced global cooling. After the last deglaciation, the RSL rose to a highstand of ~8–10 m a.p.s.l. at ~8.5–7.1 kyr BP, when the bedrock uplifted to ~20 m below the present level. After 4.0 kyr BP, both regional and global deglaciation ceased, but an effect of ongoing relaxation caused the land to rebound continuously at a uniform rate of ~1.5 m/kyr, which can account for the sustained fall of RSL across Antarctica since mid‐Holocene. Key Points A marine transgression period was constrained to 53–29 kyr BP at the Larsemann Hills, East Antarctica We provide a synthesis of the relative sea level changes and GIA‐induced displacement of the Larsemann Hills in the last 50 kyr The ongoing relaxation process of GIA account for the sustained fall of the relative sea level since mid‐Holocene</description><subject>Antarctic ice sheet</subject><subject>Bedrock</subject><subject>Coastal zone</subject><subject>Deglaciation</subject><subject>Diatoms</subject><subject>East Antarctica</subject><subject>Geophysics</subject><subject>glacial isostatic adjustment</subject><subject>Glacial periods</subject><subject>Glaciation</subject><subject>Global cooling</subject><subject>Global sea level</subject><subject>Holocene</subject><subject>Ice</subject><subject>Ice sheet dynamics</subject><subject>Ice sheets</subject><subject>Larsemann Hills</subject><subject>marine isotope stage 3</subject><subject>marine transgression</subject><subject>Meltwater</subject><subject>relative sea level</subject><subject>Sea level</subject><subject>Sea level rise</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EElXpjgNYYkvAv3G87A-0qSohUVhHTuy0KalT7ESoO47AETgLR-EkGBUhVsxi5mnm0xvpAXCO0RVGRF4TRNB8FBqOxRHoERzLSFIeH_9qTE_BwPsNCpWEFWY9sEoLA5drY1o4Xiu7Mh4qq-E0HX6-vqVWd4XRcNm5UgVuUvldHcTW2BY2JWzXBi6U82arrIWzqq49nHSusqufk28hRx_vT3t3Bk5KVXsz-Jl98Hh78zCeRYu7aToeLiJFKaIRx0JIpnOuEyG5xpgrXSRUiVyivOQFyUsTJ6TgKsFSaG4EolRRnZNSxXHCaB9cHHx3rnnujG-zTdM5G15mhHGGJSdYBuryQBWu8d6ZMtu5aqvcPsMo-04z-5tmwOkBf6lqs_-XzebT-xFnTFD6BabldTo</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Gao, Yuesong</creator><creator>Yang, Lianjiao</creator><creator>Mei, Yanjun</creator><creator>Chu, Zhuding</creator><creator>Yang, Wenqing</creator><creator>Xu, Qibin</creator><creator>Chen, Guangjie</creator><creator>Xie, Zhouqing</creator><creator>Sun, Liguang</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1703-5157</orcidid><orcidid>https://orcid.org/0000-0003-1937-2026</orcidid><orcidid>https://orcid.org/0000-0001-8035-6565</orcidid></search><sort><creationdate>202010</creationdate><title>Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr</title><author>Gao, Yuesong ; Yang, Lianjiao ; Mei, Yanjun ; Chu, Zhuding ; Yang, Wenqing ; Xu, Qibin ; Chen, Guangjie ; Xie, Zhouqing ; Sun, Liguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3303-517794db5d8795d115adc83a7b90bf5c2bfe682c5a8197d5e7033a3db2fa66843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antarctic ice sheet</topic><topic>Bedrock</topic><topic>Coastal zone</topic><topic>Deglaciation</topic><topic>Diatoms</topic><topic>East Antarctica</topic><topic>Geophysics</topic><topic>glacial isostatic adjustment</topic><topic>Glacial periods</topic><topic>Glaciation</topic><topic>Global cooling</topic><topic>Global sea level</topic><topic>Holocene</topic><topic>Ice</topic><topic>Ice sheet dynamics</topic><topic>Ice sheets</topic><topic>Larsemann Hills</topic><topic>marine isotope stage 3</topic><topic>marine transgression</topic><topic>Meltwater</topic><topic>relative sea level</topic><topic>Sea level</topic><topic>Sea level rise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yuesong</creatorcontrib><creatorcontrib>Yang, Lianjiao</creatorcontrib><creatorcontrib>Mei, Yanjun</creatorcontrib><creatorcontrib>Chu, Zhuding</creatorcontrib><creatorcontrib>Yang, Wenqing</creatorcontrib><creatorcontrib>Xu, Qibin</creatorcontrib><creatorcontrib>Chen, Guangjie</creatorcontrib><creatorcontrib>Xie, Zhouqing</creatorcontrib><creatorcontrib>Sun, Liguang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yuesong</au><au>Yang, Lianjiao</au><au>Mei, Yanjun</au><au>Chu, Zhuding</au><au>Yang, Wenqing</au><au>Xu, Qibin</au><au>Chen, Guangjie</au><au>Xie, Zhouqing</au><au>Sun, Liguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><issue>10</issue><epage>n/a</epage><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The Antarctic Ice Sheet (AIS) is the largest potential source for future global sea level rise. However, there are widely diverging estimates of its contribution, which emphasizes the need to improve our understanding of the long‐term behavior of the AIS and its impact on the solid Earth. This knowledge gap results from a shortage of records of glacial history, especially for the pre‐Holocene. Marine transgression and recession in the coastal areas of Antarctica are influenced by the mass of the overlying ice, providing crucial information about regional ice sheet dynamics. In this study, we determined a marine transgression from 53 kyr BP onward by diatom assemblages and a δ13C‐C/N biplot for the organic component in a sediment core (MCM2), from the Larsemann Hills in East Antarctica. Relative sea level (RSL) reached a maximum of ~12 m a.p.s.l. (above present sea level) during 38–29 kyr BP. Concurrent with the transgression, the regional crust experienced glacial‐isostatic‐adjustment (GIA)‐induced subsidence from ~75 to ~95 m beneath the present land level, suggesting an expansion trend of the East Antarctic ice sheet (EAIS), which may have outpaced global cooling. After the last deglaciation, the RSL rose to a highstand of ~8–10 m a.p.s.l. at ~8.5–7.1 kyr BP, when the bedrock uplifted to ~20 m below the present level. After 4.0 kyr BP, both regional and global deglaciation ceased, but an effect of ongoing relaxation caused the land to rebound continuously at a uniform rate of ~1.5 m/kyr, which can account for the sustained fall of RSL across Antarctica since mid‐Holocene. Key Points A marine transgression period was constrained to 53–29 kyr BP at the Larsemann Hills, East Antarctica We provide a synthesis of the relative sea level changes and GIA‐induced displacement of the Larsemann Hills in the last 50 kyr The ongoing relaxation process of GIA account for the sustained fall of the relative sea level since mid‐Holocene</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JB020167</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1703-5157</orcidid><orcidid>https://orcid.org/0000-0003-1937-2026</orcidid><orcidid>https://orcid.org/0000-0001-8035-6565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2020-10, Vol.125 (10), p.n/a
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2454195219
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Antarctic ice sheet
Bedrock
Coastal zone
Deglaciation
Diatoms
East Antarctica
Geophysics
glacial isostatic adjustment
Glacial periods
Glaciation
Global cooling
Global sea level
Holocene
Ice
Ice sheet dynamics
Ice sheets
Larsemann Hills
marine isotope stage 3
marine transgression
Meltwater
relative sea level
Sea level
Sea level rise
title Ice Sheet Changes and GIA‐Induced Surface Displacement of the Larsemann Hills During the Last 50 kyr
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20Sheet%20Changes%20and%20GIA%E2%80%90Induced%20Surface%20Displacement%20of%20the%20Larsemann%20Hills%20During%20the%20Last%2050%C2%A0kyr&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Gao,%20Yuesong&rft.date=2020-10&rft.volume=125&rft.issue=10&rft.epage=n/a&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2020JB020167&rft_dat=%3Cproquest_cross%3E2454195219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454195219&rft_id=info:pmid/&rfr_iscdi=true