Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location

Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of UL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2020-10, Vol.125 (10), p.n/a
Hauptverfasser: Zhang, X.‐J., Angelopoulos, V., Artemyev, A. V., Hartinger, M. D., Bortnik, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 125
creator Zhang, X.‐J.
Angelopoulos, V.
Artemyev, A. V.
Hartinger, M. D.
Bortnik, J.
description Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind. Key Points We conduct statistics on ULF perturbations generated at the magnetopause In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation
doi_str_mv 10.1029/2020JA028334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454185482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454185482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsNTefIAFr0b3fxJvpWhtSVGkpcew3WxsSpqNu4klNx_BZ_RJ3LYKnpzDzPDxm2-GAeASoxuMSHxLEEHTISIRpewE9AgWcRAzRE5_exqhczBwboN8RF7CvAeqmcnaUjaFqaDJ4XJduKbUFi7lu3Zw1cFF2Vj59fGZmJ3PD1a_tbpSHXzWtmnt6jDp7uB8reFkWxvbyErpvdVMvla6MbVsnYaJUQfyApzlsnR68FP7YPFwPx89BsnTeDIaJoGiIRVBTnCcEyaR0pQgpTItNQ-ZUhLJEOdxJnKRRTmnnAuOUUiE9jonWRZzFbKI9sHV0be2xh_smnRjWlv5lSlhnOGIs4h46vpIKWucszpPa1tspe1SjNL9U9O_T_U4PeK7otTdv2w6Hb8MuUBM0G8MmXq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454185482</pqid></control><display><type>article</type><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</creator><creatorcontrib>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</creatorcontrib><description>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind. Key Points We conduct statistics on ULF perturbations generated at the magnetopause In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2020JA028334</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Energy Transport ; Exponential Decay of ULF Amplitude ; Extremely low frequencies ; Geosynchronous orbits ; Ionosphere ; Magnetic properties ; Magnetopause ; Magnetopause Location ; Magnetospheres ; Modulation ; Modulation of Whistler Waves ; Periodic variations ; Radiation ; Radiation belts ; Solar wind ; Solar Wind Transients ; Spacecraft ; Spacecraft recovery ; ULF Waves ; Very Low Frequencies ; Whistler waves</subject><ispartof>Journal of geophysical research. Space physics, 2020-10, Vol.125 (10), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</citedby><cites>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</cites><orcidid>0000-0001-8823-4474 ; 0000-0001-7024-1561 ; 0000-0001-8811-8836 ; 0000-0002-4185-5465 ; 0000-0002-2643-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JA028334$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JA028334$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Zhang, X.‐J.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><creatorcontrib>Hartinger, M. D.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><title>Journal of geophysical research. Space physics</title><description>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind. Key Points We conduct statistics on ULF perturbations generated at the magnetopause In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</description><subject>Energy Transport</subject><subject>Exponential Decay of ULF Amplitude</subject><subject>Extremely low frequencies</subject><subject>Geosynchronous orbits</subject><subject>Ionosphere</subject><subject>Magnetic properties</subject><subject>Magnetopause</subject><subject>Magnetopause Location</subject><subject>Magnetospheres</subject><subject>Modulation</subject><subject>Modulation of Whistler Waves</subject><subject>Periodic variations</subject><subject>Radiation</subject><subject>Radiation belts</subject><subject>Solar wind</subject><subject>Solar Wind Transients</subject><subject>Spacecraft</subject><subject>Spacecraft recovery</subject><subject>ULF Waves</subject><subject>Very Low Frequencies</subject><subject>Whistler waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsNTefIAFr0b3fxJvpWhtSVGkpcew3WxsSpqNu4klNx_BZ_RJ3LYKnpzDzPDxm2-GAeASoxuMSHxLEEHTISIRpewE9AgWcRAzRE5_exqhczBwboN8RF7CvAeqmcnaUjaFqaDJ4XJduKbUFi7lu3Zw1cFF2Vj59fGZmJ3PD1a_tbpSHXzWtmnt6jDp7uB8reFkWxvbyErpvdVMvla6MbVsnYaJUQfyApzlsnR68FP7YPFwPx89BsnTeDIaJoGiIRVBTnCcEyaR0pQgpTItNQ-ZUhLJEOdxJnKRRTmnnAuOUUiE9jonWRZzFbKI9sHV0be2xh_smnRjWlv5lSlhnOGIs4h46vpIKWucszpPa1tspe1SjNL9U9O_T_U4PeK7otTdv2w6Hb8MuUBM0G8MmXq3</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhang, X.‐J.</creator><creator>Angelopoulos, V.</creator><creator>Artemyev, A. V.</creator><creator>Hartinger, M. D.</creator><creator>Bortnik, J.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid><orcidid>https://orcid.org/0000-0002-4185-5465</orcidid><orcidid>https://orcid.org/0000-0002-2643-2202</orcidid></search><sort><creationdate>202010</creationdate><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><author>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy Transport</topic><topic>Exponential Decay of ULF Amplitude</topic><topic>Extremely low frequencies</topic><topic>Geosynchronous orbits</topic><topic>Ionosphere</topic><topic>Magnetic properties</topic><topic>Magnetopause</topic><topic>Magnetopause Location</topic><topic>Magnetospheres</topic><topic>Modulation</topic><topic>Modulation of Whistler Waves</topic><topic>Periodic variations</topic><topic>Radiation</topic><topic>Radiation belts</topic><topic>Solar wind</topic><topic>Solar Wind Transients</topic><topic>Spacecraft</topic><topic>Spacecraft recovery</topic><topic>ULF Waves</topic><topic>Very Low Frequencies</topic><topic>Whistler waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.‐J.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><creatorcontrib>Hartinger, M. D.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.‐J.</au><au>Angelopoulos, V.</au><au>Artemyev, A. V.</au><au>Hartinger, M. D.</au><au>Bortnik, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><issue>10</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind. Key Points We conduct statistics on ULF perturbations generated at the magnetopause In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JA028334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid><orcidid>https://orcid.org/0000-0002-4185-5465</orcidid><orcidid>https://orcid.org/0000-0002-2643-2202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2020-10, Vol.125 (10), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2454185482
source Wiley Journals; Wiley Online Library Free Content
subjects Energy Transport
Exponential Decay of ULF Amplitude
Extremely low frequencies
Geosynchronous orbits
Ionosphere
Magnetic properties
Magnetopause
Magnetopause Location
Magnetospheres
Modulation
Modulation of Whistler Waves
Periodic variations
Radiation
Radiation belts
Solar wind
Solar Wind Transients
Spacecraft
Spacecraft recovery
ULF Waves
Very Low Frequencies
Whistler waves
title Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Whistler%20Waves%20by%20Ultra%E2%80%90Low%E2%80%90Frequency%20Perturbations:%20The%20Importance%20of%20Magnetopause%20Location&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Zhang,%20X.%E2%80%90J.&rft.date=2020-10&rft.volume=125&rft.issue=10&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2020JA028334&rft_dat=%3Cproquest_cross%3E2454185482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454185482&rft_id=info:pmid/&rfr_iscdi=true