Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location
Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of UL...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2020-10, Vol.125 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of geophysical research. Space physics |
container_volume | 125 |
creator | Zhang, X.‐J. Angelopoulos, V. Artemyev, A. V. Hartinger, M. D. Bortnik, J. |
description | Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind.
Key Points
We conduct statistics on ULF perturbations generated at the magnetopause
In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR
Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation |
doi_str_mv | 10.1029/2020JA028334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454185482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454185482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsNTefIAFr0b3fxJvpWhtSVGkpcew3WxsSpqNu4klNx_BZ_RJ3LYKnpzDzPDxm2-GAeASoxuMSHxLEEHTISIRpewE9AgWcRAzRE5_exqhczBwboN8RF7CvAeqmcnaUjaFqaDJ4XJduKbUFi7lu3Zw1cFF2Vj59fGZmJ3PD1a_tbpSHXzWtmnt6jDp7uB8reFkWxvbyErpvdVMvla6MbVsnYaJUQfyApzlsnR68FP7YPFwPx89BsnTeDIaJoGiIRVBTnCcEyaR0pQgpTItNQ-ZUhLJEOdxJnKRRTmnnAuOUUiE9jonWRZzFbKI9sHV0be2xh_smnRjWlv5lSlhnOGIs4h46vpIKWucszpPa1tspe1SjNL9U9O_T_U4PeK7otTdv2w6Hb8MuUBM0G8MmXq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454185482</pqid></control><display><type>article</type><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</creator><creatorcontrib>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</creatorcontrib><description>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind.
Key Points
We conduct statistics on ULF perturbations generated at the magnetopause
In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR
Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2020JA028334</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Energy Transport ; Exponential Decay of ULF Amplitude ; Extremely low frequencies ; Geosynchronous orbits ; Ionosphere ; Magnetic properties ; Magnetopause ; Magnetopause Location ; Magnetospheres ; Modulation ; Modulation of Whistler Waves ; Periodic variations ; Radiation ; Radiation belts ; Solar wind ; Solar Wind Transients ; Spacecraft ; Spacecraft recovery ; ULF Waves ; Very Low Frequencies ; Whistler waves</subject><ispartof>Journal of geophysical research. Space physics, 2020-10, Vol.125 (10), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</citedby><cites>FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</cites><orcidid>0000-0001-8823-4474 ; 0000-0001-7024-1561 ; 0000-0001-8811-8836 ; 0000-0002-4185-5465 ; 0000-0002-2643-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JA028334$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JA028334$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Zhang, X.‐J.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><creatorcontrib>Hartinger, M. D.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><title>Journal of geophysical research. Space physics</title><description>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind.
Key Points
We conduct statistics on ULF perturbations generated at the magnetopause
In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR
Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</description><subject>Energy Transport</subject><subject>Exponential Decay of ULF Amplitude</subject><subject>Extremely low frequencies</subject><subject>Geosynchronous orbits</subject><subject>Ionosphere</subject><subject>Magnetic properties</subject><subject>Magnetopause</subject><subject>Magnetopause Location</subject><subject>Magnetospheres</subject><subject>Modulation</subject><subject>Modulation of Whistler Waves</subject><subject>Periodic variations</subject><subject>Radiation</subject><subject>Radiation belts</subject><subject>Solar wind</subject><subject>Solar Wind Transients</subject><subject>Spacecraft</subject><subject>Spacecraft recovery</subject><subject>ULF Waves</subject><subject>Very Low Frequencies</subject><subject>Whistler waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsNTefIAFr0b3fxJvpWhtSVGkpcew3WxsSpqNu4klNx_BZ_RJ3LYKnpzDzPDxm2-GAeASoxuMSHxLEEHTISIRpewE9AgWcRAzRE5_exqhczBwboN8RF7CvAeqmcnaUjaFqaDJ4XJduKbUFi7lu3Zw1cFF2Vj59fGZmJ3PD1a_tbpSHXzWtmnt6jDp7uB8reFkWxvbyErpvdVMvla6MbVsnYaJUQfyApzlsnR68FP7YPFwPx89BsnTeDIaJoGiIRVBTnCcEyaR0pQgpTItNQ-ZUhLJEOdxJnKRRTmnnAuOUUiE9jonWRZzFbKI9sHV0be2xh_smnRjWlv5lSlhnOGIs4h46vpIKWucszpPa1tspe1SjNL9U9O_T_U4PeK7otTdv2w6Hb8MuUBM0G8MmXq3</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhang, X.‐J.</creator><creator>Angelopoulos, V.</creator><creator>Artemyev, A. V.</creator><creator>Hartinger, M. D.</creator><creator>Bortnik, J.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid><orcidid>https://orcid.org/0000-0002-4185-5465</orcidid><orcidid>https://orcid.org/0000-0002-2643-2202</orcidid></search><sort><creationdate>202010</creationdate><title>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</title><author>Zhang, X.‐J. ; Angelopoulos, V. ; Artemyev, A. V. ; Hartinger, M. D. ; Bortnik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-f219f24a0ce320ccdeae574cca0a71f9d6f6d8f53556510726ea7152dd95c7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy Transport</topic><topic>Exponential Decay of ULF Amplitude</topic><topic>Extremely low frequencies</topic><topic>Geosynchronous orbits</topic><topic>Ionosphere</topic><topic>Magnetic properties</topic><topic>Magnetopause</topic><topic>Magnetopause Location</topic><topic>Magnetospheres</topic><topic>Modulation</topic><topic>Modulation of Whistler Waves</topic><topic>Periodic variations</topic><topic>Radiation</topic><topic>Radiation belts</topic><topic>Solar wind</topic><topic>Solar Wind Transients</topic><topic>Spacecraft</topic><topic>Spacecraft recovery</topic><topic>ULF Waves</topic><topic>Very Low Frequencies</topic><topic>Whistler waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.‐J.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><creatorcontrib>Hartinger, M. D.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.‐J.</au><au>Angelopoulos, V.</au><au>Artemyev, A. V.</au><au>Hartinger, M. D.</au><au>Bortnik, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-10</date><risdate>2020</risdate><volume>125</volume><issue>10</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Ultra‐low‐frequency (ULF, 0.001–1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high‐energy electrons and for energizing the ionosphere with field‐aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler‐mode very‐low‐frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground‐based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler‐mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind.
Key Points
We conduct statistics on ULF perturbations generated at the magnetopause
In the dawn sector, the intensity of ULF perturbations generated at the magnetopause decays with the distance δR as ∼1.8RE/δR
Within 5RE from magnetopause, ULF perturbations can effectively modulate VLF whistler waves, producing quasi‐periodic electron precipitation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JA028334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid><orcidid>https://orcid.org/0000-0002-4185-5465</orcidid><orcidid>https://orcid.org/0000-0002-2643-2202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2020-10, Vol.125 (10), p.n/a |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_2454185482 |
source | Wiley Journals; Wiley Online Library Free Content |
subjects | Energy Transport Exponential Decay of ULF Amplitude Extremely low frequencies Geosynchronous orbits Ionosphere Magnetic properties Magnetopause Magnetopause Location Magnetospheres Modulation Modulation of Whistler Waves Periodic variations Radiation Radiation belts Solar wind Solar Wind Transients Spacecraft Spacecraft recovery ULF Waves Very Low Frequencies Whistler waves |
title | Modulation of Whistler Waves by Ultra‐Low‐Frequency Perturbations: The Importance of Magnetopause Location |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Whistler%20Waves%20by%20Ultra%E2%80%90Low%E2%80%90Frequency%20Perturbations:%20The%20Importance%20of%20Magnetopause%20Location&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Zhang,%20X.%E2%80%90J.&rft.date=2020-10&rft.volume=125&rft.issue=10&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2020JA028334&rft_dat=%3Cproquest_cross%3E2454185482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454185482&rft_id=info:pmid/&rfr_iscdi=true |