Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects
On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly des...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.89071-89083 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89083 |
---|---|
container_issue | |
container_start_page | 89071 |
container_title | IEEE access |
container_volume | 8 |
creator | Yang, Guigeng Tang, Aofei Yuan, Zhenyi Yang, Zhenchao Li, Shujuan Li, Yan |
description | On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range. |
doi_str_mv | 10.1109/ACCESS.2020.2993813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454101076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093992</ieee_id><doaj_id>oai_doaj_org_article_eec7b3ff304b4d129269b15af8531f27</doaj_id><sourcerecordid>2454101076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoOWNH1F_QioOek-rTMY-BlW4EOBerutIMgy1SiwLUyyTn030-Zi2I8kATx3iOJV1W3jK4Zo3C_adtt16055XTNAUTDxEV1xVkNK6FEfflf_7m6yflASzRlpPRV9bs7JW8dkm5vjyXPtg9jmN_IV8xhN5HoyU_Me_KMfkQ3x0Q204zTZDNp45TDgClMO9Idzxove0yvdiRb7ws2f6k-eTtmvHmv19Wvb9uX9sfq8en7Q7t5XDlJm3kF1jHHtFPCQ9P4QVhagxda9Vr3gwRZ90w4kD0MglnhmBKagfKouZc1BXFdPSy6Q7QHc0zh1aY3E20w_wYx7YxNc3AjGkSne-G9oLKXA-PAa-iZsr5Rgnmui9bdonVM8c8J82wO8ZSmcr7hUklGGdV1QYkF5VLMOaH_2MqoOZtiFlPM2RTzbkph3S6sgIgfDCgfAHDxFwj_hug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454101076</pqid></control><display><type>article</type><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</creator><creatorcontrib>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</creatorcontrib><description>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2993813</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace environments ; Cables ; Control stability ; Deformation ; Design ; Finite element method ; Internal forces ; Mathematical model ; Mathematical models ; mechanical-thermal Matching (MTM) ; Mesh reflector antennas ; Reflector antennas ; Reflectors ; Shape ; Strain ; surface shape stability ; Surface stability ; Temperature effects ; Thermal analysis ; Thermal force ; Thermal loading ; thermal loads ; Thermal stability</subject><ispartof>IEEE access, 2020, Vol.8, p.89071-89083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</citedby><cites>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</cites><orcidid>0000-0001-7176-4639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093992$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Yang, Guigeng</creatorcontrib><creatorcontrib>Tang, Aofei</creatorcontrib><creatorcontrib>Yuan, Zhenyi</creatorcontrib><creatorcontrib>Yang, Zhenchao</creatorcontrib><creatorcontrib>Li, Shujuan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><title>IEEE access</title><addtitle>Access</addtitle><description>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</description><subject>Aerospace environments</subject><subject>Cables</subject><subject>Control stability</subject><subject>Deformation</subject><subject>Design</subject><subject>Finite element method</subject><subject>Internal forces</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>mechanical-thermal Matching (MTM)</subject><subject>Mesh reflector antennas</subject><subject>Reflector antennas</subject><subject>Reflectors</subject><subject>Shape</subject><subject>Strain</subject><subject>surface shape stability</subject><subject>Surface stability</subject><subject>Temperature effects</subject><subject>Thermal analysis</subject><subject>Thermal force</subject><subject>Thermal loading</subject><subject>thermal loads</subject><subject>Thermal stability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoOWNH1F_QioOek-rTMY-BlW4EOBerutIMgy1SiwLUyyTn030-Zi2I8kATx3iOJV1W3jK4Zo3C_adtt16055XTNAUTDxEV1xVkNK6FEfflf_7m6yflASzRlpPRV9bs7JW8dkm5vjyXPtg9jmN_IV8xhN5HoyU_Me_KMfkQ3x0Q204zTZDNp45TDgClMO9Idzxove0yvdiRb7ws2f6k-eTtmvHmv19Wvb9uX9sfq8en7Q7t5XDlJm3kF1jHHtFPCQ9P4QVhagxda9Vr3gwRZ90w4kD0MglnhmBKagfKouZc1BXFdPSy6Q7QHc0zh1aY3E20w_wYx7YxNc3AjGkSne-G9oLKXA-PAa-iZsr5Rgnmui9bdonVM8c8J82wO8ZSmcr7hUklGGdV1QYkF5VLMOaH_2MqoOZtiFlPM2RTzbkph3S6sgIgfDCgfAHDxFwj_hug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Guigeng</creator><creator>Tang, Aofei</creator><creator>Yuan, Zhenyi</creator><creator>Yang, Zhenchao</creator><creator>Li, Shujuan</creator><creator>Li, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7176-4639</orcidid></search><sort><creationdate>2020</creationdate><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><author>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace environments</topic><topic>Cables</topic><topic>Control stability</topic><topic>Deformation</topic><topic>Design</topic><topic>Finite element method</topic><topic>Internal forces</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>mechanical-thermal Matching (MTM)</topic><topic>Mesh reflector antennas</topic><topic>Reflector antennas</topic><topic>Reflectors</topic><topic>Shape</topic><topic>Strain</topic><topic>surface shape stability</topic><topic>Surface stability</topic><topic>Temperature effects</topic><topic>Thermal analysis</topic><topic>Thermal force</topic><topic>Thermal loading</topic><topic>thermal loads</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guigeng</creatorcontrib><creatorcontrib>Tang, Aofei</creatorcontrib><creatorcontrib>Yuan, Zhenyi</creatorcontrib><creatorcontrib>Yang, Zhenchao</creatorcontrib><creatorcontrib>Li, Shujuan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guigeng</au><au>Tang, Aofei</au><au>Yuan, Zhenyi</au><au>Yang, Zhenchao</au><au>Li, Shujuan</au><au>Li, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>89071</spage><epage>89083</epage><pages>89071-89083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2993813</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7176-4639</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.89071-89083 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454101076 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aerospace environments Cables Control stability Deformation Design Finite element method Internal forces Mathematical model Mathematical models mechanical-thermal Matching (MTM) Mesh reflector antennas Reflector antennas Reflectors Shape Strain surface shape stability Surface stability Temperature effects Thermal analysis Thermal force Thermal loading thermal loads Thermal stability |
title | Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Shape%20Stability%20Design%20of%20Mesh%20Reflector%20Antennas%20Considering%20Space%20Thermal%20Effects&rft.jtitle=IEEE%20access&rft.au=Yang,%20Guigeng&rft.date=2020&rft.volume=8&rft.spage=89071&rft.epage=89083&rft.pages=89071-89083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2993813&rft_dat=%3Cproquest_cross%3E2454101076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454101076&rft_id=info:pmid/&rft_ieee_id=9093992&rft_doaj_id=oai_doaj_org_article_eec7b3ff304b4d129269b15af8531f27&rfr_iscdi=true |