Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects

On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.89071-89083
Hauptverfasser: Yang, Guigeng, Tang, Aofei, Yuan, Zhenyi, Yang, Zhenchao, Li, Shujuan, Li, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89083
container_issue
container_start_page 89071
container_title IEEE access
container_volume 8
creator Yang, Guigeng
Tang, Aofei
Yuan, Zhenyi
Yang, Zhenchao
Li, Shujuan
Li, Yan
description On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.
doi_str_mv 10.1109/ACCESS.2020.2993813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454101076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093992</ieee_id><doaj_id>oai_doaj_org_article_eec7b3ff304b4d129269b15af8531f27</doaj_id><sourcerecordid>2454101076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoOWNH1F_QioOek-rTMY-BlW4EOBerutIMgy1SiwLUyyTn030-Zi2I8kATx3iOJV1W3jK4Zo3C_adtt16055XTNAUTDxEV1xVkNK6FEfflf_7m6yflASzRlpPRV9bs7JW8dkm5vjyXPtg9jmN_IV8xhN5HoyU_Me_KMfkQ3x0Q204zTZDNp45TDgClMO9Idzxove0yvdiRb7ws2f6k-eTtmvHmv19Wvb9uX9sfq8en7Q7t5XDlJm3kF1jHHtFPCQ9P4QVhagxda9Vr3gwRZ90w4kD0MglnhmBKagfKouZc1BXFdPSy6Q7QHc0zh1aY3E20w_wYx7YxNc3AjGkSne-G9oLKXA-PAa-iZsr5Rgnmui9bdonVM8c8J82wO8ZSmcr7hUklGGdV1QYkF5VLMOaH_2MqoOZtiFlPM2RTzbkph3S6sgIgfDCgfAHDxFwj_hug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454101076</pqid></control><display><type>article</type><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</creator><creatorcontrib>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</creatorcontrib><description>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2993813</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace environments ; Cables ; Control stability ; Deformation ; Design ; Finite element method ; Internal forces ; Mathematical model ; Mathematical models ; mechanical-thermal Matching (MTM) ; Mesh reflector antennas ; Reflector antennas ; Reflectors ; Shape ; Strain ; surface shape stability ; Surface stability ; Temperature effects ; Thermal analysis ; Thermal force ; Thermal loading ; thermal loads ; Thermal stability</subject><ispartof>IEEE access, 2020, Vol.8, p.89071-89083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</citedby><cites>FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</cites><orcidid>0000-0001-7176-4639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093992$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Yang, Guigeng</creatorcontrib><creatorcontrib>Tang, Aofei</creatorcontrib><creatorcontrib>Yuan, Zhenyi</creatorcontrib><creatorcontrib>Yang, Zhenchao</creatorcontrib><creatorcontrib>Li, Shujuan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><title>IEEE access</title><addtitle>Access</addtitle><description>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</description><subject>Aerospace environments</subject><subject>Cables</subject><subject>Control stability</subject><subject>Deformation</subject><subject>Design</subject><subject>Finite element method</subject><subject>Internal forces</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>mechanical-thermal Matching (MTM)</subject><subject>Mesh reflector antennas</subject><subject>Reflector antennas</subject><subject>Reflectors</subject><subject>Shape</subject><subject>Strain</subject><subject>surface shape stability</subject><subject>Surface stability</subject><subject>Temperature effects</subject><subject>Thermal analysis</subject><subject>Thermal force</subject><subject>Thermal loading</subject><subject>thermal loads</subject><subject>Thermal stability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoOWNH1F_QioOek-rTMY-BlW4EOBerutIMgy1SiwLUyyTn030-Zi2I8kATx3iOJV1W3jK4Zo3C_adtt16055XTNAUTDxEV1xVkNK6FEfflf_7m6yflASzRlpPRV9bs7JW8dkm5vjyXPtg9jmN_IV8xhN5HoyU_Me_KMfkQ3x0Q204zTZDNp45TDgClMO9Idzxove0yvdiRb7ws2f6k-eTtmvHmv19Wvb9uX9sfq8en7Q7t5XDlJm3kF1jHHtFPCQ9P4QVhagxda9Vr3gwRZ90w4kD0MglnhmBKagfKouZc1BXFdPSy6Q7QHc0zh1aY3E20w_wYx7YxNc3AjGkSne-G9oLKXA-PAa-iZsr5Rgnmui9bdonVM8c8J82wO8ZSmcr7hUklGGdV1QYkF5VLMOaH_2MqoOZtiFlPM2RTzbkph3S6sgIgfDCgfAHDxFwj_hug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Guigeng</creator><creator>Tang, Aofei</creator><creator>Yuan, Zhenyi</creator><creator>Yang, Zhenchao</creator><creator>Li, Shujuan</creator><creator>Li, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7176-4639</orcidid></search><sort><creationdate>2020</creationdate><title>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</title><author>Yang, Guigeng ; Tang, Aofei ; Yuan, Zhenyi ; Yang, Zhenchao ; Li, Shujuan ; Li, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9ac1c17c53f988fd3a069f375b77bd4946b13c94b9d31a3c1537195fe72f46093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace environments</topic><topic>Cables</topic><topic>Control stability</topic><topic>Deformation</topic><topic>Design</topic><topic>Finite element method</topic><topic>Internal forces</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>mechanical-thermal Matching (MTM)</topic><topic>Mesh reflector antennas</topic><topic>Reflector antennas</topic><topic>Reflectors</topic><topic>Shape</topic><topic>Strain</topic><topic>surface shape stability</topic><topic>Surface stability</topic><topic>Temperature effects</topic><topic>Thermal analysis</topic><topic>Thermal force</topic><topic>Thermal loading</topic><topic>thermal loads</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guigeng</creatorcontrib><creatorcontrib>Tang, Aofei</creatorcontrib><creatorcontrib>Yuan, Zhenyi</creatorcontrib><creatorcontrib>Yang, Zhenchao</creatorcontrib><creatorcontrib>Li, Shujuan</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guigeng</au><au>Tang, Aofei</au><au>Yuan, Zhenyi</au><au>Yang, Zhenchao</au><au>Li, Shujuan</au><au>Li, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>89071</spage><epage>89083</epage><pages>89071-89083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>On-orbit periodic thermal loads degrade the reflector surface accuracy of AstroMesh antennas. To address this problem, a surface shape stability design method is proposed to passively pre-control the on-orbit thermal deformation of mesh reflectors, in which the structural parameters are properly designed to make the internal forces of the whole structure change coordinately and the surface shape of cable-mesh antennas insensitive to thermal loads. First, mathematical models of mechanical-thermal matching (MTM) are established for AstroMesh reflectors, in which an MTM model is developed for the cable net structure and the reflector membrane is equivalent to a cable net structure according to the force balance and thermal deformation coordination relationships. Then, based on the mathematical models, a surface shape stability design strategy is presented for AstroMesh antennas to properly design the cross-sectional dimensions of the cables. Finally, typical AstroMesh reflector structures are designed using the proposed method and simulation results show that the thermal deformations of the obtained AstroMesh reflectors are quite small under the whole temperature range.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2993813</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7176-4639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.89071-89083
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454101076
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aerospace environments
Cables
Control stability
Deformation
Design
Finite element method
Internal forces
Mathematical model
Mathematical models
mechanical-thermal Matching (MTM)
Mesh reflector antennas
Reflector antennas
Reflectors
Shape
Strain
surface shape stability
Surface stability
Temperature effects
Thermal analysis
Thermal force
Thermal loading
thermal loads
Thermal stability
title Surface Shape Stability Design of Mesh Reflector Antennas Considering Space Thermal Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Shape%20Stability%20Design%20of%20Mesh%20Reflector%20Antennas%20Considering%20Space%20Thermal%20Effects&rft.jtitle=IEEE%20access&rft.au=Yang,%20Guigeng&rft.date=2020&rft.volume=8&rft.spage=89071&rft.epage=89083&rft.pages=89071-89083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2993813&rft_dat=%3Cproquest_cross%3E2454101076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454101076&rft_id=info:pmid/&rft_ieee_id=9093992&rft_doaj_id=oai_doaj_org_article_eec7b3ff304b4d129269b15af8531f27&rfr_iscdi=true