Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation

This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.91236-91247
Hauptverfasser: Saleem, Omer, Mahmood-Ul-Hasan, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91247
container_issue
container_start_page 91236
container_title IEEE access
container_volume 8
creator Saleem, Omer
Mahmood-Ul-Hasan, Khalid
description This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.
doi_str_mv 10.1109/ACCESS.2020.2994830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454100823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093854</ieee_id><doaj_id>oai_doaj_org_article_9bb30b15ca71423fb944d24de8b307a1</doaj_id><sourcerecordid>2454100823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</originalsourceid><addsrcrecordid>eNpNUV1rHCEUHUoDDWl-QV6EPs_Wz1EflyXbLKSkdJO-iqN3gtuJbh0nkF-Qv123E0KFi97jPcd7PU1zRfCKEKy_rjeb6_1-RTHFK6o1Vwx_aM4p6XTLBOs-_nf-1FxO0wHXpSok5Hnzuos-ZHAFrb09lvAMaF9sgXYL4HvrfqNNiiWnEaUB_UzF5he0i8-QC3j0A6Kfx_kJPUwhPqI9jEP7fa70U3bzcoTcpzG4djtHV0KKExpSRndxDBGq7lTQL5uDPV19bs4GO05w-bZfNA_b6_vNTXt79223Wd-2jmNV2l5QMXDeS6WI5Ex1SlDFnFNC244xrWVHmACoIblwlCjvHDApvRdKYsUumt2i65M9mGMOT3Uik2ww_4CUH43NJbgRjO57hnsinJWEUzb0mnNPuQdVcWlJ1fqyaB1z-jPDVMwhzTnW9g3lgpP6y5TVKrZUuZymKcPw_irB5mSgWQw0JwPNm4GVdbWwAgC8MzTWTAnO_gKfj5bS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454100823</pqid></control><display><type>article</type><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</creator><creatorcontrib>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</creatorcontrib><description>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2994830</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Control systems ; cost-function ; Damping ; DC motors ; Feedback control ; Hyperbolic functions ; Linear quadratic regulator ; Multivariable control ; Nonlinear dynamical systems ; Pendulums ; Polarity ; Retrofitting ; Robustness ; rotary inverted pendulum ; self-tuning control ; state weighting-coefficients ; Waveforms ; Weighting</subject><ispartof>IEEE access, 2020, Vol.8, p.91236-91247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</citedby><cites>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</cites><orcidid>0000-0003-2197-9302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093854$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Saleem, Omer</creatorcontrib><creatorcontrib>Mahmood-Ul-Hasan, Khalid</creatorcontrib><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</description><subject>Adaptive control</subject><subject>Control systems</subject><subject>cost-function</subject><subject>Damping</subject><subject>DC motors</subject><subject>Feedback control</subject><subject>Hyperbolic functions</subject><subject>Linear quadratic regulator</subject><subject>Multivariable control</subject><subject>Nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Polarity</subject><subject>Retrofitting</subject><subject>Robustness</subject><subject>rotary inverted pendulum</subject><subject>self-tuning control</subject><subject>state weighting-coefficients</subject><subject>Waveforms</subject><subject>Weighting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rHCEUHUoDDWl-QV6EPs_Wz1EflyXbLKSkdJO-iqN3gtuJbh0nkF-Qv123E0KFi97jPcd7PU1zRfCKEKy_rjeb6_1-RTHFK6o1Vwx_aM4p6XTLBOs-_nf-1FxO0wHXpSok5Hnzuos-ZHAFrb09lvAMaF9sgXYL4HvrfqNNiiWnEaUB_UzF5he0i8-QC3j0A6Kfx_kJPUwhPqI9jEP7fa70U3bzcoTcpzG4djtHV0KKExpSRndxDBGq7lTQL5uDPV19bs4GO05w-bZfNA_b6_vNTXt79223Wd-2jmNV2l5QMXDeS6WI5Ex1SlDFnFNC244xrWVHmACoIblwlCjvHDApvRdKYsUumt2i65M9mGMOT3Uik2ww_4CUH43NJbgRjO57hnsinJWEUzb0mnNPuQdVcWlJ1fqyaB1z-jPDVMwhzTnW9g3lgpP6y5TVKrZUuZymKcPw_irB5mSgWQw0JwPNm4GVdbWwAgC8MzTWTAnO_gKfj5bS</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Saleem, Omer</creator><creator>Mahmood-Ul-Hasan, Khalid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2197-9302</orcidid></search><sort><creationdate>2020</creationdate><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><author>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Control systems</topic><topic>cost-function</topic><topic>Damping</topic><topic>DC motors</topic><topic>Feedback control</topic><topic>Hyperbolic functions</topic><topic>Linear quadratic regulator</topic><topic>Multivariable control</topic><topic>Nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Polarity</topic><topic>Retrofitting</topic><topic>Robustness</topic><topic>rotary inverted pendulum</topic><topic>self-tuning control</topic><topic>state weighting-coefficients</topic><topic>Waveforms</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Omer</creatorcontrib><creatorcontrib>Mahmood-Ul-Hasan, Khalid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Omer</au><au>Mahmood-Ul-Hasan, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>91236</spage><epage>91247</epage><pages>91236-91247</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2994830</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2197-9302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.91236-91247
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454100823
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive control
Control systems
cost-function
Damping
DC motors
Feedback control
Hyperbolic functions
Linear quadratic regulator
Multivariable control
Nonlinear dynamical systems
Pendulums
Polarity
Retrofitting
Robustness
rotary inverted pendulum
self-tuning control
state weighting-coefficients
Waveforms
Weighting
title Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Adaptive%20State-Feedback%20Control%20of%20Rotary%20Inverted%20Pendulum%20Using%20Self-Mutating%20Hyperbolic-Functions%20for%20Online%20Cost%20Variation&rft.jtitle=IEEE%20access&rft.au=Saleem,%20Omer&rft.date=2020&rft.volume=8&rft.spage=91236&rft.epage=91247&rft.pages=91236-91247&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2994830&rft_dat=%3Cproquest_cross%3E2454100823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454100823&rft_id=info:pmid/&rft_ieee_id=9093854&rft_doaj_id=oai_doaj_org_article_9bb30b15ca71423fb944d24de8b307a1&rfr_iscdi=true