Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation
This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.91236-91247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91247 |
---|---|
container_issue | |
container_start_page | 91236 |
container_title | IEEE access |
container_volume | 8 |
creator | Saleem, Omer Mahmood-Ul-Hasan, Khalid |
description | This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances. |
doi_str_mv | 10.1109/ACCESS.2020.2994830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454100823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093854</ieee_id><doaj_id>oai_doaj_org_article_9bb30b15ca71423fb944d24de8b307a1</doaj_id><sourcerecordid>2454100823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</originalsourceid><addsrcrecordid>eNpNUV1rHCEUHUoDDWl-QV6EPs_Wz1EflyXbLKSkdJO-iqN3gtuJbh0nkF-Qv123E0KFi97jPcd7PU1zRfCKEKy_rjeb6_1-RTHFK6o1Vwx_aM4p6XTLBOs-_nf-1FxO0wHXpSok5Hnzuos-ZHAFrb09lvAMaF9sgXYL4HvrfqNNiiWnEaUB_UzF5he0i8-QC3j0A6Kfx_kJPUwhPqI9jEP7fa70U3bzcoTcpzG4djtHV0KKExpSRndxDBGq7lTQL5uDPV19bs4GO05w-bZfNA_b6_vNTXt79223Wd-2jmNV2l5QMXDeS6WI5Ex1SlDFnFNC244xrWVHmACoIblwlCjvHDApvRdKYsUumt2i65M9mGMOT3Uik2ww_4CUH43NJbgRjO57hnsinJWEUzb0mnNPuQdVcWlJ1fqyaB1z-jPDVMwhzTnW9g3lgpP6y5TVKrZUuZymKcPw_irB5mSgWQw0JwPNm4GVdbWwAgC8MzTWTAnO_gKfj5bS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454100823</pqid></control><display><type>article</type><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</creator><creatorcontrib>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</creatorcontrib><description>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2994830</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Control systems ; cost-function ; Damping ; DC motors ; Feedback control ; Hyperbolic functions ; Linear quadratic regulator ; Multivariable control ; Nonlinear dynamical systems ; Pendulums ; Polarity ; Retrofitting ; Robustness ; rotary inverted pendulum ; self-tuning control ; state weighting-coefficients ; Waveforms ; Weighting</subject><ispartof>IEEE access, 2020, Vol.8, p.91236-91247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</citedby><cites>FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</cites><orcidid>0000-0003-2197-9302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093854$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Saleem, Omer</creatorcontrib><creatorcontrib>Mahmood-Ul-Hasan, Khalid</creatorcontrib><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</description><subject>Adaptive control</subject><subject>Control systems</subject><subject>cost-function</subject><subject>Damping</subject><subject>DC motors</subject><subject>Feedback control</subject><subject>Hyperbolic functions</subject><subject>Linear quadratic regulator</subject><subject>Multivariable control</subject><subject>Nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Polarity</subject><subject>Retrofitting</subject><subject>Robustness</subject><subject>rotary inverted pendulum</subject><subject>self-tuning control</subject><subject>state weighting-coefficients</subject><subject>Waveforms</subject><subject>Weighting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rHCEUHUoDDWl-QV6EPs_Wz1EflyXbLKSkdJO-iqN3gtuJbh0nkF-Qv123E0KFi97jPcd7PU1zRfCKEKy_rjeb6_1-RTHFK6o1Vwx_aM4p6XTLBOs-_nf-1FxO0wHXpSok5Hnzuos-ZHAFrb09lvAMaF9sgXYL4HvrfqNNiiWnEaUB_UzF5he0i8-QC3j0A6Kfx_kJPUwhPqI9jEP7fa70U3bzcoTcpzG4djtHV0KKExpSRndxDBGq7lTQL5uDPV19bs4GO05w-bZfNA_b6_vNTXt79223Wd-2jmNV2l5QMXDeS6WI5Ex1SlDFnFNC244xrWVHmACoIblwlCjvHDApvRdKYsUumt2i65M9mGMOT3Uik2ww_4CUH43NJbgRjO57hnsinJWEUzb0mnNPuQdVcWlJ1fqyaB1z-jPDVMwhzTnW9g3lgpP6y5TVKrZUuZymKcPw_irB5mSgWQw0JwPNm4GVdbWwAgC8MzTWTAnO_gKfj5bS</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Saleem, Omer</creator><creator>Mahmood-Ul-Hasan, Khalid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2197-9302</orcidid></search><sort><creationdate>2020</creationdate><title>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</title><author>Saleem, Omer ; Mahmood-Ul-Hasan, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b525f44b78817438685283cc859a6339976135ee35e745c218dcce377dd587083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Control systems</topic><topic>cost-function</topic><topic>Damping</topic><topic>DC motors</topic><topic>Feedback control</topic><topic>Hyperbolic functions</topic><topic>Linear quadratic regulator</topic><topic>Multivariable control</topic><topic>Nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Polarity</topic><topic>Retrofitting</topic><topic>Robustness</topic><topic>rotary inverted pendulum</topic><topic>self-tuning control</topic><topic>state weighting-coefficients</topic><topic>Waveforms</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Omer</creatorcontrib><creatorcontrib>Mahmood-Ul-Hasan, Khalid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Omer</au><au>Mahmood-Ul-Hasan, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>91236</spage><epage>91247</epage><pages>91236-91247</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the development of an indirect adaptive state-feedback controller to improve the disturbance-rejection capability of under-actuated multivariable systems. The ubiquitous Linear-Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the state weighting-coefficients of LQR's quadratic cost-function via state-error dependent nonlinear-scaling functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly manipulates the system's control effort as the response converges to or diverges from the reference. The efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed adaptive controller renders rapid transits in system's response with improved damping against oscillations, while maintaining its asymptotic-stability, under bounded exogenous disturbances.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2994830</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2197-9302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.91236-91247 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454100823 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive control Control systems cost-function Damping DC motors Feedback control Hyperbolic functions Linear quadratic regulator Multivariable control Nonlinear dynamical systems Pendulums Polarity Retrofitting Robustness rotary inverted pendulum self-tuning control state weighting-coefficients Waveforms Weighting |
title | Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Adaptive%20State-Feedback%20Control%20of%20Rotary%20Inverted%20Pendulum%20Using%20Self-Mutating%20Hyperbolic-Functions%20for%20Online%20Cost%20Variation&rft.jtitle=IEEE%20access&rft.au=Saleem,%20Omer&rft.date=2020&rft.volume=8&rft.spage=91236&rft.epage=91247&rft.pages=91236-91247&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2994830&rft_dat=%3Cproquest_cross%3E2454100823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454100823&rft_id=info:pmid/&rft_ieee_id=9093854&rft_doaj_id=oai_doaj_org_article_9bb30b15ca71423fb944d24de8b307a1&rfr_iscdi=true |