Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology

Heterogeneous database integration is the study of integrating data from multiple databases. Integrating the heterogeneous database of the same domain has three main challenges that make the heterogeneity problem difficult to solve. The three problems are Semantic, Syntactic and Structural Heterogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.77903-77919
Hauptverfasser: Asfand-E-Yar, Muhammad, Ali, Ramis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77919
container_issue
container_start_page 77903
container_title IEEE access
container_volume 8
creator Asfand-E-Yar, Muhammad
Ali, Ramis
description Heterogeneous database integration is the study of integrating data from multiple databases. Integrating the heterogeneous database of the same domain has three main challenges that make the heterogeneity problem difficult to solve. The three problems are Semantic, Syntactic and Structural Heterogeneity. Conventional heterogeneous database integration schemes, like De-duplication Techniques, Data Warehouse, and Information Retrieval (IR) Search technique lack the capability to solve the integration of databases completely. The only reason is they cannot deal with Semantic heterogeneity problems efficiently. The semantic Web ontology model is experimented and discussed in the article, which is based on the query execution model. The ontology modeling is divided into two phases, initially to translate the database rules according to ontology rules to find an abstract ontology model. Secondly, to extend the abstract ontology model according to the databases. The method facilitates to apply similarly SPQRAL queries to search the data in the databases. Therefore, the Jena API is used to retrieve semantically similar records. The experiment is based on the two heterogeneous Universities Library Databases. The results show the effectiveness and scalability of the methodology.
doi_str_mv 10.1109/ACCESS.2020.2988685
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454092350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9072157</ieee_id><doaj_id>oai_doaj_org_article_ab4e093e9a10402a9efd36a4c3cd3d65</doaj_id><sourcerecordid>2454092350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-931070292e42957ba255a4ea96c5af3ac44d7ebdf71ce5c5505a1fb705ba19af3</originalsourceid><addsrcrecordid>eNpNUctOw0AMjBBIIOgX9BKJc4v3lWSPKDxaqYhD4bxyNk6UqsnCbnro37MlqMIXW_bM2NYkyZzBkjHQD49l-bzdLjlwWHJdFFmhLpIbzjK9EEpkl__q62QWwg5iFLGl8pvkbUs9DmNn0_UwUutx7NyQuiZd0UjetTSQO4T0CUesMFA4jbbYU_rkeuyG9DN0Q5u-D6Pbu_Z4l1w1uA80-8u3yefL80e5WmzeX9fl42ZhJRTjQgsGOXDNSfJ4RYVcKZSEOrMKG4FWyjqnqm5yZklZpUAha6ocVIVMR8Rtsp50a4c78-W7Hv3ROOzMb8P51qCPT-3JYCUJtCCNDCRw1NTUIkNpha1FnamodT9pfXn3faAwmp07-CGeb7hUEjQXCiJKTCjrXQiemvNWBuZkg5lsMCcbzJ8NkTWfWB0RnRkacs5ULn4A3ReDUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092350</pqid></control><display><type>article</type><title>Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Asfand-E-Yar, Muhammad ; Ali, Ramis</creator><creatorcontrib>Asfand-E-Yar, Muhammad ; Ali, Ramis</creatorcontrib><description>Heterogeneous database integration is the study of integrating data from multiple databases. Integrating the heterogeneous database of the same domain has three main challenges that make the heterogeneity problem difficult to solve. The three problems are Semantic, Syntactic and Structural Heterogeneity. Conventional heterogeneous database integration schemes, like De-duplication Techniques, Data Warehouse, and Information Retrieval (IR) Search technique lack the capability to solve the integration of databases completely. The only reason is they cannot deal with Semantic heterogeneity problems efficiently. The semantic Web ontology model is experimented and discussed in the article, which is based on the query execution model. The ontology modeling is divided into two phases, initially to translate the database rules according to ontology rules to find an abstract ontology model. Secondly, to extend the abstract ontology model according to the databases. The method facilitates to apply similarly SPQRAL queries to search the data in the databases. Therefore, the Jena API is used to retrieve semantically similar records. The experiment is based on the two heterogeneous Universities Library Databases. The results show the effectiveness and scalability of the methodology.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2988685</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data search ; Data warehouses ; Domains ; Heterogeneity ; Information retrieval ; Library Databases ; Ontologies ; Ontology ; Ontology modelling ; Relational databases ; Resource description framework ; Semantic Integration ; Semantic Web ; Semantics</subject><ispartof>IEEE access, 2020, Vol.8, p.77903-77919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-931070292e42957ba255a4ea96c5af3ac44d7ebdf71ce5c5505a1fb705ba19af3</citedby><cites>FETCH-LOGICAL-c408t-931070292e42957ba255a4ea96c5af3ac44d7ebdf71ce5c5505a1fb705ba19af3</cites><orcidid>0000-0001-5695-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9072157$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Asfand-E-Yar, Muhammad</creatorcontrib><creatorcontrib>Ali, Ramis</creatorcontrib><title>Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology</title><title>IEEE access</title><addtitle>Access</addtitle><description>Heterogeneous database integration is the study of integrating data from multiple databases. Integrating the heterogeneous database of the same domain has three main challenges that make the heterogeneity problem difficult to solve. The three problems are Semantic, Syntactic and Structural Heterogeneity. Conventional heterogeneous database integration schemes, like De-duplication Techniques, Data Warehouse, and Information Retrieval (IR) Search technique lack the capability to solve the integration of databases completely. The only reason is they cannot deal with Semantic heterogeneity problems efficiently. The semantic Web ontology model is experimented and discussed in the article, which is based on the query execution model. The ontology modeling is divided into two phases, initially to translate the database rules according to ontology rules to find an abstract ontology model. Secondly, to extend the abstract ontology model according to the databases. The method facilitates to apply similarly SPQRAL queries to search the data in the databases. Therefore, the Jena API is used to retrieve semantically similar records. The experiment is based on the two heterogeneous Universities Library Databases. The results show the effectiveness and scalability of the methodology.</description><subject>Data models</subject><subject>Data search</subject><subject>Data warehouses</subject><subject>Domains</subject><subject>Heterogeneity</subject><subject>Information retrieval</subject><subject>Library Databases</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Ontology modelling</subject><subject>Relational databases</subject><subject>Resource description framework</subject><subject>Semantic Integration</subject><subject>Semantic Web</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOw0AMjBBIIOgX9BKJc4v3lWSPKDxaqYhD4bxyNk6UqsnCbnro37MlqMIXW_bM2NYkyZzBkjHQD49l-bzdLjlwWHJdFFmhLpIbzjK9EEpkl__q62QWwg5iFLGl8pvkbUs9DmNn0_UwUutx7NyQuiZd0UjetTSQO4T0CUesMFA4jbbYU_rkeuyG9DN0Q5u-D6Pbu_Z4l1w1uA80-8u3yefL80e5WmzeX9fl42ZhJRTjQgsGOXDNSfJ4RYVcKZSEOrMKG4FWyjqnqm5yZklZpUAha6ocVIVMR8Rtsp50a4c78-W7Hv3ROOzMb8P51qCPT-3JYCUJtCCNDCRw1NTUIkNpha1FnamodT9pfXn3faAwmp07-CGeb7hUEjQXCiJKTCjrXQiemvNWBuZkg5lsMCcbzJ8NkTWfWB0RnRkacs5ULn4A3ReDUg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Asfand-E-Yar, Muhammad</creator><creator>Ali, Ramis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5695-1399</orcidid></search><sort><creationdate>2020</creationdate><title>Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology</title><author>Asfand-E-Yar, Muhammad ; Ali, Ramis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-931070292e42957ba255a4ea96c5af3ac44d7ebdf71ce5c5505a1fb705ba19af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data models</topic><topic>Data search</topic><topic>Data warehouses</topic><topic>Domains</topic><topic>Heterogeneity</topic><topic>Information retrieval</topic><topic>Library Databases</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Ontology modelling</topic><topic>Relational databases</topic><topic>Resource description framework</topic><topic>Semantic Integration</topic><topic>Semantic Web</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asfand-E-Yar, Muhammad</creatorcontrib><creatorcontrib>Ali, Ramis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asfand-E-Yar, Muhammad</au><au>Ali, Ramis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>77903</spage><epage>77919</epage><pages>77903-77919</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Heterogeneous database integration is the study of integrating data from multiple databases. Integrating the heterogeneous database of the same domain has three main challenges that make the heterogeneity problem difficult to solve. The three problems are Semantic, Syntactic and Structural Heterogeneity. Conventional heterogeneous database integration schemes, like De-duplication Techniques, Data Warehouse, and Information Retrieval (IR) Search technique lack the capability to solve the integration of databases completely. The only reason is they cannot deal with Semantic heterogeneity problems efficiently. The semantic Web ontology model is experimented and discussed in the article, which is based on the query execution model. The ontology modeling is divided into two phases, initially to translate the database rules according to ontology rules to find an abstract ontology model. Secondly, to extend the abstract ontology model according to the databases. The method facilitates to apply similarly SPQRAL queries to search the data in the databases. Therefore, the Jena API is used to retrieve semantically similar records. The experiment is based on the two heterogeneous Universities Library Databases. The results show the effectiveness and scalability of the methodology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2988685</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5695-1399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.77903-77919
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454092350
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Data models
Data search
Data warehouses
Domains
Heterogeneity
Information retrieval
Library Databases
Ontologies
Ontology
Ontology modelling
Relational databases
Resource description framework
Semantic Integration
Semantic Web
Semantics
title Semantic Integration of Heterogeneous Databases of Same Domain Using Ontology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Integration%20of%20Heterogeneous%20Databases%20of%20Same%20Domain%20Using%20Ontology&rft.jtitle=IEEE%20access&rft.au=Asfand-E-Yar,%20Muhammad&rft.date=2020&rft.volume=8&rft.spage=77903&rft.epage=77919&rft.pages=77903-77919&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2988685&rft_dat=%3Cproquest_doaj_%3E2454092350%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092350&rft_id=info:pmid/&rft_ieee_id=9072157&rft_doaj_id=oai_doaj_org_article_ab4e093e9a10402a9efd36a4c3cd3d65&rfr_iscdi=true