From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection
Phishing is a type of fraud attempt in which the attacker, usually by e-mail, pretends to be a trusted person or entity in order to obtain sensitive information from a target. Most recent phishing detection researches have focused on obtaining highly distinctive features from the metadata and text o...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.76368-76385 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76385 |
---|---|
container_issue | |
container_start_page | 76368 |
container_title | IEEE access |
container_volume | 8 |
creator | Gualberto, Eder S. De Sousa, Rafael T. De B. Vieira, Thiago P. Da Costa, Joao Paulo C. L. Duque, Claudio G. |
description | Phishing is a type of fraud attempt in which the attacker, usually by e-mail, pretends to be a trusted person or entity in order to obtain sensitive information from a target. Most recent phishing detection researches have focused on obtaining highly distinctive features from the metadata and text of these e-mails. The obtained attributes are then used to feed classification algorithms in order to determine whether they are phishing or legitimate messages. In this paper, it is proposed an approach based on machine learning to detect phishing e-mail attacks. The methods that compose this approach are performed through a feature engineering process based on natural language processing, lemmatization, topics modeling, improved learning techniques for resampling and cross-validation, and hyperparameters configuration. The first proposed method uses all the features obtained from the Document-Term Matrix (DTM) in the classification algorithms. The second one uses Latent Dirichlet Allocation (LDA) as a operation to deal with the problems of the "curse of dimensionality", the sparsity, and the text context portion included in the obtained representation. The proposed approach reached marks with an F1-measure of 99.95% success rate using the XGBoost algorithm. It outperforms state-of-the-art phishing detection researches for an accredited data set, in applications based only on the body of the e-mails, without using other e-mail features such as its header, IP information or number of links in the text. |
doi_str_mv | 10.1109/ACCESS.2020.2989126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454091879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9075252</ieee_id><doaj_id>oai_doaj_org_article_eb52153152634b3f95a1f82ccc9278d3</doaj_id><sourcerecordid>2454091879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5a36f4622a58c2e308e2a39c89e2972252019bbf89def1fba13153e2dbdb071e3</originalsourceid><addsrcrecordid>eNpNkU9PAyEQxTdGE436CbyQeG6FYdmFo6mtNtHY-OdoCAuzLU1dKmwPfntp1xi5QIb3ezOTVxRXjI4Zo-rmdjKZvr6OgQIdg5KKQXVUnAGr1IgLXh3_e58WlymtaT4yl0R9VnzMYvgkMzT9LiKZdkvfIUbfLYnpHHkLW28TeQoON4n0IQtWprPoyCKi87b3oSMvpsdEfEcWK59We_QOezz8XRQnrdkkvPy9z4v32fRt8jB6fL6fT24fR7aksh8Jw6u2rACMkBaQU4lguLJSIagaQABlqmlaqRy2rG0M40xwBNe4htYM-XkxH3xdMGu9jf7TxG8djNeHQohLbWLv7QY1NgIyzARUvGx4q4RhrQRrrYJaOp69rgevbQxfO0y9Xodd7PL4GkpRUsVkrbKKDyobQ0oR27-ujOp9LHqIRe9j0b-xZOpqoDwi_hGK1iLvyH8ASG-HuA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454091879</pqid></control><display><type>article</type><title>From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gualberto, Eder S. ; De Sousa, Rafael T. ; De B. Vieira, Thiago P. ; Da Costa, Joao Paulo C. L. ; Duque, Claudio G.</creator><creatorcontrib>Gualberto, Eder S. ; De Sousa, Rafael T. ; De B. Vieira, Thiago P. ; Da Costa, Joao Paulo C. L. ; Duque, Claudio G.</creatorcontrib><description>Phishing is a type of fraud attempt in which the attacker, usually by e-mail, pretends to be a trusted person or entity in order to obtain sensitive information from a target. Most recent phishing detection researches have focused on obtaining highly distinctive features from the metadata and text of these e-mails. The obtained attributes are then used to feed classification algorithms in order to determine whether they are phishing or legitimate messages. In this paper, it is proposed an approach based on machine learning to detect phishing e-mail attacks. The methods that compose this approach are performed through a feature engineering process based on natural language processing, lemmatization, topics modeling, improved learning techniques for resampling and cross-validation, and hyperparameters configuration. The first proposed method uses all the features obtained from the Document-Term Matrix (DTM) in the classification algorithms. The second one uses Latent Dirichlet Allocation (LDA) as a operation to deal with the problems of the "curse of dimensionality", the sparsity, and the text context portion included in the obtained representation. The proposed approach reached marks with an F1-measure of 99.95% success rate using the XGBoost algorithm. It outperforms state-of-the-art phishing detection researches for an accredited data set, in applications based only on the body of the e-mails, without using other e-mail features such as its header, IP information or number of links in the text.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2989126</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Cybercrime ; Dirichlet problem ; Electronic mail ; Electronic mail systems ; Feature engineering ; Feature extraction ; Fraud ; Machine learning ; Mail ; Natural language processing ; Phishing ; phishing detection ; Resampling ; Target detection ; topics modeling ; Unsolicited e-mail ; XGBoost</subject><ispartof>IEEE access, 2020, Vol.8, p.76368-76385</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5a36f4622a58c2e308e2a39c89e2972252019bbf89def1fba13153e2dbdb071e3</citedby><cites>FETCH-LOGICAL-c408t-5a36f4622a58c2e308e2a39c89e2972252019bbf89def1fba13153e2dbdb071e3</cites><orcidid>0000-0002-8616-4924 ; 0000-0003-3558-466X ; 0000-0002-2917-3605 ; 0000-0003-0512-374X ; 0000-0003-1101-3029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9075252$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Gualberto, Eder S.</creatorcontrib><creatorcontrib>De Sousa, Rafael T.</creatorcontrib><creatorcontrib>De B. Vieira, Thiago P.</creatorcontrib><creatorcontrib>Da Costa, Joao Paulo C. L.</creatorcontrib><creatorcontrib>Duque, Claudio G.</creatorcontrib><title>From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Phishing is a type of fraud attempt in which the attacker, usually by e-mail, pretends to be a trusted person or entity in order to obtain sensitive information from a target. Most recent phishing detection researches have focused on obtaining highly distinctive features from the metadata and text of these e-mails. The obtained attributes are then used to feed classification algorithms in order to determine whether they are phishing or legitimate messages. In this paper, it is proposed an approach based on machine learning to detect phishing e-mail attacks. The methods that compose this approach are performed through a feature engineering process based on natural language processing, lemmatization, topics modeling, improved learning techniques for resampling and cross-validation, and hyperparameters configuration. The first proposed method uses all the features obtained from the Document-Term Matrix (DTM) in the classification algorithms. The second one uses Latent Dirichlet Allocation (LDA) as a operation to deal with the problems of the "curse of dimensionality", the sparsity, and the text context portion included in the obtained representation. The proposed approach reached marks with an F1-measure of 99.95% success rate using the XGBoost algorithm. It outperforms state-of-the-art phishing detection researches for an accredited data set, in applications based only on the body of the e-mails, without using other e-mail features such as its header, IP information or number of links in the text.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Cybercrime</subject><subject>Dirichlet problem</subject><subject>Electronic mail</subject><subject>Electronic mail systems</subject><subject>Feature engineering</subject><subject>Feature extraction</subject><subject>Fraud</subject><subject>Machine learning</subject><subject>Mail</subject><subject>Natural language processing</subject><subject>Phishing</subject><subject>phishing detection</subject><subject>Resampling</subject><subject>Target detection</subject><subject>topics modeling</subject><subject>Unsolicited e-mail</subject><subject>XGBoost</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PAyEQxTdGE436CbyQeG6FYdmFo6mtNtHY-OdoCAuzLU1dKmwPfntp1xi5QIb3ezOTVxRXjI4Zo-rmdjKZvr6OgQIdg5KKQXVUnAGr1IgLXh3_e58WlymtaT4yl0R9VnzMYvgkMzT9LiKZdkvfIUbfLYnpHHkLW28TeQoON4n0IQtWprPoyCKi87b3oSMvpsdEfEcWK59We_QOezz8XRQnrdkkvPy9z4v32fRt8jB6fL6fT24fR7aksh8Jw6u2rACMkBaQU4lguLJSIagaQABlqmlaqRy2rG0M40xwBNe4htYM-XkxH3xdMGu9jf7TxG8djNeHQohLbWLv7QY1NgIyzARUvGx4q4RhrQRrrYJaOp69rgevbQxfO0y9Xodd7PL4GkpRUsVkrbKKDyobQ0oR27-ujOp9LHqIRe9j0b-xZOpqoDwi_hGK1iLvyH8ASG-HuA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gualberto, Eder S.</creator><creator>De Sousa, Rafael T.</creator><creator>De B. Vieira, Thiago P.</creator><creator>Da Costa, Joao Paulo C. L.</creator><creator>Duque, Claudio G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8616-4924</orcidid><orcidid>https://orcid.org/0000-0003-3558-466X</orcidid><orcidid>https://orcid.org/0000-0002-2917-3605</orcidid><orcidid>https://orcid.org/0000-0003-0512-374X</orcidid><orcidid>https://orcid.org/0000-0003-1101-3029</orcidid></search><sort><creationdate>2020</creationdate><title>From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection</title><author>Gualberto, Eder S. ; De Sousa, Rafael T. ; De B. Vieira, Thiago P. ; Da Costa, Joao Paulo C. L. ; Duque, Claudio G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5a36f4622a58c2e308e2a39c89e2972252019bbf89def1fba13153e2dbdb071e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Cybercrime</topic><topic>Dirichlet problem</topic><topic>Electronic mail</topic><topic>Electronic mail systems</topic><topic>Feature engineering</topic><topic>Feature extraction</topic><topic>Fraud</topic><topic>Machine learning</topic><topic>Mail</topic><topic>Natural language processing</topic><topic>Phishing</topic><topic>phishing detection</topic><topic>Resampling</topic><topic>Target detection</topic><topic>topics modeling</topic><topic>Unsolicited e-mail</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualberto, Eder S.</creatorcontrib><creatorcontrib>De Sousa, Rafael T.</creatorcontrib><creatorcontrib>De B. Vieira, Thiago P.</creatorcontrib><creatorcontrib>Da Costa, Joao Paulo C. L.</creatorcontrib><creatorcontrib>Duque, Claudio G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualberto, Eder S.</au><au>De Sousa, Rafael T.</au><au>De B. Vieira, Thiago P.</au><au>Da Costa, Joao Paulo C. L.</au><au>Duque, Claudio G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>76368</spage><epage>76385</epage><pages>76368-76385</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Phishing is a type of fraud attempt in which the attacker, usually by e-mail, pretends to be a trusted person or entity in order to obtain sensitive information from a target. Most recent phishing detection researches have focused on obtaining highly distinctive features from the metadata and text of these e-mails. The obtained attributes are then used to feed classification algorithms in order to determine whether they are phishing or legitimate messages. In this paper, it is proposed an approach based on machine learning to detect phishing e-mail attacks. The methods that compose this approach are performed through a feature engineering process based on natural language processing, lemmatization, topics modeling, improved learning techniques for resampling and cross-validation, and hyperparameters configuration. The first proposed method uses all the features obtained from the Document-Term Matrix (DTM) in the classification algorithms. The second one uses Latent Dirichlet Allocation (LDA) as a operation to deal with the problems of the "curse of dimensionality", the sparsity, and the text context portion included in the obtained representation. The proposed approach reached marks with an F1-measure of 99.95% success rate using the XGBoost algorithm. It outperforms state-of-the-art phishing detection researches for an accredited data set, in applications based only on the body of the e-mails, without using other e-mail features such as its header, IP information or number of links in the text.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2989126</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8616-4924</orcidid><orcidid>https://orcid.org/0000-0003-3558-466X</orcidid><orcidid>https://orcid.org/0000-0002-2917-3605</orcidid><orcidid>https://orcid.org/0000-0003-0512-374X</orcidid><orcidid>https://orcid.org/0000-0003-1101-3029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.76368-76385 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454091879 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Classification Classification algorithms Cybercrime Dirichlet problem Electronic mail Electronic mail systems Feature engineering Feature extraction Fraud Machine learning Natural language processing Phishing phishing detection Resampling Target detection topics modeling Unsolicited e-mail XGBoost |
title | From Feature Engineering and Topics Models to Enhanced Prediction Rates in Phishing Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Feature%20Engineering%20and%20Topics%20Models%20to%20Enhanced%20Prediction%20Rates%20in%20Phishing%20Detection&rft.jtitle=IEEE%20access&rft.au=Gualberto,%20Eder%20S.&rft.date=2020&rft.volume=8&rft.spage=76368&rft.epage=76385&rft.pages=76368-76385&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2989126&rft_dat=%3Cproquest_doaj_%3E2454091879%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454091879&rft_id=info:pmid/&rft_ieee_id=9075252&rft_doaj_id=oai_doaj_org_article_eb52153152634b3f95a1f82ccc9278d3&rfr_iscdi=true |