Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator

Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.77013-77048
Hauptverfasser: Zhang, J., Wang, J. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77048
container_issue
container_start_page 77013
container_title IEEE access
container_volume 8
creator Zhang, J.
Wang, J. S.
description Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.
doi_str_mv 10.1109/ACCESS.2020.2989445
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2454091752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9076166</ieee_id><doaj_id>oai_doaj_org_article_57aa7e941424459bbb45b4eee9880020</doaj_id><sourcerecordid>2454091752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-29924bf59f5f2c7e211f451c089e57273f4ed5ae5d46b30dade6e4768a5495783</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaKg6H7BXgI-byZp0jSPs_gxGPowZY_htrndMtpmplXQX29mRcxLwuGcc2_OSZIpo3PGqL5ZFMXdej3nlNM517kWQp4kF5xlepbKNDv99z5PJn2_p_HkEZLqIoFlewj-Ay3Z7KBB8nwYXOu-YHC-I4tm64Mbdi25hT5SIvTku8Z1CIEsLETuB5INuu1uINBZ8uAbix1ZR0Z0wgCDD1fJWQ1Nj5Pf-zJ5vb97KR5nq-eHZbFYzSpB82HGteairKWuZc0rhZyxWkhW0VyjVFyltUArAaUVWZlSCxYzFCrLQYr4kzy9TJajr_WwN4fgWgifxoMzP4APWwNhcFWDRioAhVowwWNYuixLIUuBiDrPaYwxel2PXjGbt3fsB7P376GL6xsupKCaKckjKx1ZVfB9H7D-m8qoOVZjxmrMsRrzW01UTUeViwP_FJqqjGVZ-g0lxolD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454091752</pqid></control><display><type>article</type><title>Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, J. ; Wang, J. S.</creator><creatorcontrib>Zhang, J. ; Wang, J. S.</creatorcontrib><description>Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2989445</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Convergence ; Fireworks ; golden sine operator ; Heuristic methods ; Mathematical model ; nonlinear adaptive weight ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Reagents ; Searching ; Sociology ; Statistics ; Swarm intelligence ; Trigonometric functions ; Weight ; Whale optimization algorithm ; Whales ; Xenon</subject><ispartof>IEEE access, 2020, Vol.8, p.77013-77048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-29924bf59f5f2c7e211f451c089e57273f4ed5ae5d46b30dade6e4768a5495783</citedby><cites>FETCH-LOGICAL-c408t-29924bf59f5f2c7e211f451c089e57273f4ed5ae5d46b30dade6e4768a5495783</cites><orcidid>0000-0002-8853-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9076166$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Wang, J. S.</creatorcontrib><title>Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.</description><subject>Adaptive algorithms</subject><subject>Convergence</subject><subject>Fireworks</subject><subject>golden sine operator</subject><subject>Heuristic methods</subject><subject>Mathematical model</subject><subject>nonlinear adaptive weight</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Reagents</subject><subject>Searching</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Swarm intelligence</subject><subject>Trigonometric functions</subject><subject>Weight</subject><subject>Whale optimization algorithm</subject><subject>Whales</subject><subject>Xenon</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaKg6H7BXgI-byZp0jSPs_gxGPowZY_htrndMtpmplXQX29mRcxLwuGcc2_OSZIpo3PGqL5ZFMXdej3nlNM517kWQp4kF5xlepbKNDv99z5PJn2_p_HkEZLqIoFlewj-Ay3Z7KBB8nwYXOu-YHC-I4tm64Mbdi25hT5SIvTku8Z1CIEsLETuB5INuu1uINBZ8uAbix1ZR0Z0wgCDD1fJWQ1Nj5Pf-zJ5vb97KR5nq-eHZbFYzSpB82HGteairKWuZc0rhZyxWkhW0VyjVFyltUArAaUVWZlSCxYzFCrLQYr4kzy9TJajr_WwN4fgWgifxoMzP4APWwNhcFWDRioAhVowwWNYuixLIUuBiDrPaYwxel2PXjGbt3fsB7P376GL6xsupKCaKckjKx1ZVfB9H7D-m8qoOVZjxmrMsRrzW01UTUeViwP_FJqqjGVZ-g0lxolD</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, J.</creator><creator>Wang, J. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8853-1927</orcidid></search><sort><creationdate>2020</creationdate><title>Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator</title><author>Zhang, J. ; Wang, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-29924bf59f5f2c7e211f451c089e57273f4ed5ae5d46b30dade6e4768a5495783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Convergence</topic><topic>Fireworks</topic><topic>golden sine operator</topic><topic>Heuristic methods</topic><topic>Mathematical model</topic><topic>nonlinear adaptive weight</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Reagents</topic><topic>Searching</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Swarm intelligence</topic><topic>Trigonometric functions</topic><topic>Weight</topic><topic>Whale optimization algorithm</topic><topic>Whales</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Wang, J. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, J.</au><au>Wang, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>77013</spage><epage>77048</epage><pages>77013-77048</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2989445</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-8853-1927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.77013-77048
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454091752
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive algorithms
Convergence
Fireworks
golden sine operator
Heuristic methods
Mathematical model
nonlinear adaptive weight
Optimization
Optimization algorithms
Particle swarm optimization
Reagents
Searching
Sociology
Statistics
Swarm intelligence
Trigonometric functions
Weight
Whale optimization algorithm
Whales
Xenon
title Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Whale%20Optimization%20Algorithm%20Based%20on%20Nonlinear%20Adaptive%20Weight%20and%20Golden%20Sine%20Operator&rft.jtitle=IEEE%20access&rft.au=Zhang,%20J.&rft.date=2020&rft.volume=8&rft.spage=77013&rft.epage=77048&rft.pages=77013-77048&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2989445&rft_dat=%3Cproquest_doaj_%3E2454091752%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454091752&rft_id=info:pmid/&rft_ieee_id=9076166&rft_doaj_id=oai_doaj_org_article_57aa7e941424459bbb45b4eee9880020&rfr_iscdi=true